|
Abstract: |
Investigated by this study is an MFC actuator attached to the surface of a Carbon Fiber Reinforced Polymer (CFRP) composite beam to form a beam-actuator system. Analytically capturing the characteristics of such system is essential. A novel analytical methodology considering the transverse shear strain and active stiffening effect is proposed, which was newly applied to analyze the static and dynamic behaviors of the beam-actuator system. The governing equations of the beam-actuator system were obtained via generalized Hamilton’s principle. A distributed transfer function formulation was developed. Then, the closed form solution was derived by using the Green’s function. Frequency response, natural frequencies, and modal shapes of the beam-actuator system were obtained. The solution is analytical without using any truncated series or admissible functions at any arbitrary boundary conditions. Finite Element Method (FEM) results were also obtained to compare with that of the proposed method. The predictions of the analyses were verified experimentally, which shows the correctness and effectiveness of the proposed method. |
Key words: Macro Fiber Composites (MFC) Carbon Fiber Reinforced Polymer (CFRP) distributed transfer function formulation Green’s function |
DOI:10.11916/j.issn.1005-9113.18111 |
Clc Number:O39 |
Fund: |
|
Descriptions in Chinese: |
MFC作动器复合材料层合梁的静、动力学分析 伍 科1,Houfei. Fang 2, 兰澜2 (1.西安空间无线电技术研究所,西安 710100; 2.上海跃盛信息技术有限公司,上海 200240) 创新点说明:1)基于哈密尔顿变分原理建立了MFC作动器复合材料层合梁的分布力学模型,模型考虑了剪切应变和主动应力刚化效应。 2)运用传递函数法和格林函数得到了分布系统的解析解,无需使用级数或者本征函数构造位移模式; 3)这种方法可以推广到智能层合桁架结构分布力学模型的建立和求解。 研究目的: 为智能梁结构动力学研究提供分布力学模型和求解方法;可方便的运用于智能梁结构的形状或振动控制中。 研究方法: 基于智能层合梁结构的位移假设和本构关系,运用哈密尔顿原理建立了智能层合梁结构的控制方程;运用分布传递函数法和格林函数求解了控制方程的解析解;进而根据解析解表达式建立了系统动力学刚度矩阵,得到了系统的静力学变形、模态频率、模态形状和频率响应。 研究结果: 1)运用有限元法和实验验证了智能层合梁的静力学变形,梁的挠度计算和实测结果相近。 2)在低频段,有限元法计算的模态频率与传递函数法相近,高频段则有较小的差别。 3)在频响分析中,传递函数法与有限元500个单元得到的结果相接近,高频段有微小差别。 结论: 对有智能层合梁结构,本文的建模和求解方法具有很好的适用性,可以方便的求出系统的静力学变形、模型频率 、形状以及频率响应;与通常的有限元方法相比,方法具有 1)无需对力学模型进行离散化,得到的为控制方程的解析解; 2)在动力学分析中,无需使用大量单元即可获得高精度的模态频率和频率响应; 3)在高频计算中具有一定优势; 4)可推广运用于智能桁架结构的动力学分析中。 关键词:MFC作动器,CFRP复合材料,分布传递函数法,格林函数 |