期刊检索

  • 2024年第32卷
  • 2023年第31卷
  • 2022年第30卷
  • 2021年第29卷
  • 2020年第28卷
  • 2019年第27卷
  • 2018年第26卷
  • 2017年第25卷
  • 2016年第24卷
  • 2015年第23卷
  • 2014年第22卷
  • 2013年第21卷
  • 2012年第20卷
  • 2011年第19卷
  • 2010年第18卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 中国材料研究学会
哈尔滨工业大学
主编 苑世剑 国际刊号ISSN 1005-0299 国内刊号CN 23-1345/TB

期刊网站二维码
微信公众号二维码
引用本文:崔冰,彭云,赵琳,彭梦都,宋威,竺培显.焊接热循环对1 000 MPa级焊缝金属组织性能的影响[J].材料科学与工艺,2016,24(1):44-50.DOI:10.11951/j.issn.1005-0299.20160107.
CUI Bing,PENG Yun,ZHAO Lin,PENG Mengdu,SONG Wei,ZHU Peixian.Effects of weld thermal cycle on microstructure and properties of 1 000 MPa grade weld metal[J].Materials Science and Technology,2016,24(1):44-50.DOI:10.11951/j.issn.1005-0299.20160107.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2150次   下载 2325 本文二维码信息
码上扫一扫!
分享到: 微信 更多
焊接热循环对1 000 MPa级焊缝金属组织性能的影响
崔冰1,2,彭云2,赵琳2,彭梦都2,宋威2,竺培显1
(1.昆明理工大学 材料科学与工程学院,昆明 650093;2. 先进钢铁流程及材料国家重点实验室(钢铁研究总院),北京100081)
摘要:
为研究多层多道焊对1 000 MPa级焊缝金属组织性能的影响,采用热模拟试验对末道焊缝金属进行一次及二次焊接热循环,并通过冲击、硬度试验, 利用金相显微镜、扫描电镜、透射电子显微镜和电子背散射衍射技术分析热循环后焊缝金属组织性能的变化规律.结果表明:单次热循环下,随着峰值温度(Tp)的升高,冲击韧性逐渐下降,显微硬度先上升后下降;TP为800 ℃时出现了软化现象,显微硬度326 HV,冲击韧性较高为64 J;TP为950 ℃时,其奥氏体晶粒相对细小,具有良好的综合力学性能;TP为1 350 ℃时,显微硬度最高为383 HV,冲击吸收功只有19 J,其脆化原因是冷却时获得粗大原奥氏体晶粒以及粗大的、且方向性较为一致的板条马氏体和贝氏体硬脆组织; 经800 ℃的二次循环后,再次出现软化现象, 显微硬度为313 HV,并且焊缝热影响区中残余奥氏体体积分数为1.39%,冲击韧性得到改善为59 J.
关键词:  焊缝金属  热循环  显微组织  韧性  残余奥氏体
DOI:10.11951/j.issn.1005-0299.20160107
分类号:TG441.3
文献标识码:A
基金项目:国家国际科技合作专项项目(2015DFA51460).
Effects of weld thermal cycle on microstructure and properties of 1 000 MPa grade weld metal
CUI Bing1,2, PENG Yun2, ZHAO Lin2, PENG Mengdu2, SONG Wei2, ZHU Peixian1
(1.College of Materials Science and Engineering,Kunming University of Science and Technology, Kunming 650093,China; 2.State Key Laboratory of Advanced Steel Processes and Products(China Iron and Steel Research Institute Group),Beijing 100081,China)
Abstract:
The influence of welding thermal cycle on the microstructures and mechnical properties of 1 000 MPa grade weld metal was investigated by means of welding thermal simulation, metallography, transmission electron microscope (TEM), scanning electron microscope (SEM), electron backscatter diffraction (EBSD), Charpy impact toughness test and hardness test. With the increase of peak temperature, the impact toughness decreased, and the hardness increased first and then decreased under single-pass thermal cycling. When peak temperature is 800 ℃, softened zone appeared with low microhardness of 326 HV and high impact toughness of 64 J. When peak temperature increased to 900 ℃, the prior-austenite grains were refined, resulting in good comprehensive mechanical properties at HAZ. Highest microhardness of 383 HV, yet with lowest impact toughness of 19 J, was achieved at peak temperature of 1 350 ℃. The reason for the embrittlement was the coarsed prior-austensite grain and oriented coarsed bainite/martensite. When the re-heating peak temperature of twice welding thermal cycle is 800 ℃, which is in the α-γ two phase region, softened zone can be found in the CGHAZ after two-pass welding thermal cycle. The microhardness is 313 HV, and residual austensite is about 1.39%, which can improve the impact toughness (59 J).
Key words:  weld metal  welding thermal cycle  microstructure  toughness  residual austensite

友情链接LINKS