引用本文: | 程思锐,王春举,单德彬,郭斌.Zr基块体非晶合金微通道阵列过冷液相区压印工艺[J].材料科学与工艺,2017,25(2):10-15.DOI:10.11951/j.issn.1005-0299.20160358. |
| CHENG Sirui,WANG Chunju,SHAN Debin,GUO Bin.Study on the embossing process of micro channel arrays for Zr-based metallic glass in supercooled liquid region[J].Materials Science and Technology,2017,25(2):10-15.DOI:10.11951/j.issn.1005-0299.20160358. |
|
本文已被:浏览 1967次 下载 1674次 |
码上扫一扫! |
|
Zr基块体非晶合金微通道阵列过冷液相区压印工艺 |
程思锐1,2,3,王春举1,2,单德彬1,2,郭斌1,2
|
(1.哈尔滨工业大学大学 材料科学与工程学院,哈尔滨 150001;2.金属精密热加工国家级重点实验室(哈尔滨工业大学), 哈尔滨 150001;3.中航工业北京航空制造工程研究所,北京 100024)
|
|
摘要: |
本文利用Zr41Ti14Cu12.5Ni10Be22.5(Vit1) 块体非晶合金对不同宽度的微通道阵列进行充填实验,并研究了形腔宽度、压印载荷与温度对微通道阵列充填高度的影响规律.实验结果表明,随着型腔宽度和压印载荷的增加,微通道充填高度逐渐上升.这就意味着较高的载荷和型腔宽度有利于Vit1块体非晶合金在微通道中了流动.成形温度由673 K上升至703 K时,微通道充填高度由9.1 μm增加至46.6 μm;然而,当实验温度达到713 K时,微通道阵列的充填高度急剧下降至26.9 μm.XRD结果显示,在713 K下成形后的试样中存在大量亚稳态的晶化相,非晶基体中的晶化相会增大材料的流动阻力,从而降低其对微通道阵列的充填能力.因此,Vit1合金微通道阵列成形温度区间应控制在673~703 K.
|
关键词: Zr基块体非晶合金 Si模具 微通道阵列 压印 微成形性能 |
DOI:10.11951/j.issn.1005-0299.20160358 |
分类号:TG146 |
文献标识码:A |
基金项目:国家自然科学基金资助项目(51375113);哈工大基础杰出人才培育计划III类(HIT.BRETIII.201404). |
|
Study on the embossing process of micro channel arrays for Zr-based metallic glass in supercooled liquid region |
CHENG Sirui1,2,3, WANG Chunju1,2, SHAN Debin1,2, GUO Bin1,2
|
(1.School of Materials Science & Engineering, Harbin Institute of Technology, Harbin 150001, China; 2.The National Key Laboratory for Precision Hot Forming of Metals(Harbin Institute of Technology), Harbin 150001, China; 3.AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China)
|
Abstract: |
The hot-embossing experiments of micro channel arrays have been conducted in Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1) bulk metallic glass (BMG) under various temperatures and loads. The filling height of micro channel increases with the increase of load and cavity width. That means higher embossing load and cavity width is favourable to the flow process of Vit1 alloy in micro channel. In addition, the filling height of micro channel increases from 9.1 μm to 46.6 μm at the temperature from 673 K to 703 K. However, the filling height decreases sharply to 26.9 μm when the experimental temperature rises to 713 K. XRD data indicates there are a larger number metastable crystallization phases in the samples which have been deformed at 713 K. The result reveals that these crystallization phases increase the flow resistance so as to depress the filling process of micro channel. Thus, the forming temperatures of micro channel arrays with BMGs should be carried out at the temperature range of 673~703 K.
|
Key words: Zr-based bulk metallic glass Si mould micro channel array imprint micro-forming ability |