引用本文: | 卞贵学,陈跃良,张勇,王安东,丁文勇.基于微观结构的高强铝合金应力集中系数研究[J].材料科学与工艺,2017,25(5):41-47.DOI:10.11951/j.issn.1005-0299.20160331. |
| BIAN Guixue,CHEN Yueliang,ZHANG Yong,WANG Andong,DING Wenyong.Study on stress concentration coefficient of high strength aluminum alloy microstructures[J].Materials Science and Technology,2017,25(5):41-47.DOI:10.11951/j.issn.1005-0299.20160331. |
|
摘要: |
为了更好地理解铝合金材料的微观力学性能,基于MATLAB编写了Voronoi算法的微观结构模拟程序,并将程序导入ABAQUS有限元软件建立铝合金晶粒模型.推导出六结点内聚线单元模型的界面单元刚度矩阵,利用内聚力模型的内聚力-位移关系描述铝合金晶粒界面间的粘着力(法向力)和摩擦力(切向力),建立了微观晶粒结构的有限元模型.研究结果表明:单个夹杂粒子随着弹性模量的增加应力集中系数先减小再增加;相对于单个夹杂粒子,两个夹杂粒子的应力集中会增加,当d/r接近2时应力集中系数明显增加, 当d/r值处在6左右时应力集中系数基本恢复到单夹杂粒子时的大小.夹杂粒子的形状、数量及分布状态对结构微观应力集中均有影响.
|
关键词: 铝合金 Voronoi 微观结构 有限元 应力集中系数 |
DOI:10.11951/j.issn.1005-0299.20160331 |
分类号:TG171 |
文献标识码:A |
基金项目:国家自然科学基金资助项目(4,0). |
|
Study on stress concentration coefficient of high strength aluminum alloy microstructures |
BIAN Guixue, CHEN Yueliang, ZHANG Yong,WANG Andong,DING Wenyong
|
(Qingdao Branch, Naval Aeronautical Engineering Institute, Qingdao 266041,China)
|
Abstract: |
To better understand the micro-mechanical properties of aluminum alloys, the simulation program of Voronoi algorithm for micro structure was written based on MATLAB, and the program is imported into ABAQUS finite element software to build the grain model of aluminum alloy. The interfacial element stiffness matrix of the six-node cohesive element model is deduced. The adhesion force (normal force) and the frictional force (tangential force) between the grain boundaries of the aluminum alloy were described by the cohesion-displacement relationship of the cohesive zone model (CZM), and the finite element model of micro grain structure was established. The results show that the stress concentration coefficient of single inclusion particles decreases and then increases with the increase of elastic modulus. The stress concentration of the two inclusions increases with respect to the single inclusion particles, and the stress concentration coefficient increases significantly when the d/r is close to 2. When the d/r is approximately equal to 6, the stress concentration coefficient is restored to the value of the single particles. The shape, number and distribution of inclusion particles have an influence on the microstructure stress concentration.
|
Key words: aluminum alloy Voronoi microstructure FEM stress concentration factor |