期刊检索

  • 2024年第32卷
  • 2023年第31卷
  • 2022年第30卷
  • 2021年第29卷
  • 2020年第28卷
  • 2019年第27卷
  • 2018年第26卷
  • 2017年第25卷
  • 2016年第24卷
  • 2015年第23卷
  • 2014年第22卷
  • 2013年第21卷
  • 2012年第20卷
  • 2011年第19卷
  • 2010年第18卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 中国材料研究学会
哈尔滨工业大学
主编 苑世剑 国际刊号ISSN 1005-0299 国内刊号CN 23-1345/TB

期刊网站二维码
微信公众号二维码
引用本文:赵彩甜,王景芹.不同浓度Cu掺杂SnO2材料电学和力学性质的研究[J].材料科学与工艺,2017,25(6):34-39.DOI:10.11951/j.issn.1005-0299.20160467.
ZHAO Caitian,WANG Jingqin.Study on electrical and mechanical properties of Cu doped SnO2 with different concentration[J].Materials Science and Technology,2017,25(6):34-39.DOI:10.11951/j.issn.1005-0299.20160467.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1489次   下载 885 本文二维码信息
码上扫一扫!
分享到: 微信 更多
不同浓度Cu掺杂SnO2材料电学和力学性质的研究
赵彩甜,王景芹
(省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学),天津300130)
摘要:
为研究Cu掺入对SnO2性能的影响,本文采用密度泛函理论和平面波赝势法,建立了未掺杂SnO2和不同比例Cu掺杂的SnO2晶胞模型,对Sn1-xCuxO2(x=0、0.083、0.125、0.167、0.25、0.5)超晶胞体系进行优化计算、能量计算和弹性模量计算,得到晶格常数、弹性模量、电荷分布、能带结构和态密度图.研究表明:掺杂能够使得材料的弹性模量大幅减小,对应的硬化函数值降低,易于材料加工;在电性质方面,掺杂后,材料均属于直接带隙半导体材料.当x>0.25时,由于掺杂浓度过高使得晶格发生畸变,电性质与未掺杂情况类似;当x<0.25时,随着掺杂浓度的降低,导带收缩加剧,局域性增强,禁带宽度变窄,使得电子从价带受激跃迁所需能量降低,故掺杂后材料表现出半金属性,导电性增强.
关键词:  Cu  SnO2  第一性原理计算  力学性质  电学性质
DOI:10.11951/j.issn.1005-0299.20160467
分类号:TM201.3
文献标识码:A
基金项目:国家自然科学基金资助项目(51777057);河北省自然科学基金资助项目(E2016202106);河北省高等学校科学技术研究项目(ZD2016078).
Study on electrical and mechanical properties of Cu doped SnO2 with different concentration
ZHAO Caitian , WANG Jingqin
(Province-Ministry Joint State Key Laboratory of Reliability and Intelligence of Electrical Equipment ( Hebei University of Technology), Tianjin 300130, China)
Abstract:
To investigate the influence of Cu doping on the properties of SnO2, by using density functional theory and plane wave pseudopotential method, built were the crystal cells, which include SnO2 and SnO2 with different proportion of Cu. The energy and elastic modulus of Sn1-xCuxO2 (x=0, 0.083, 0.125, 0.167, 0.25, 0.5) supercell system were calculated and optimized to obtain the lattice constant, elastic modulus, charge distribution, band structure and density of states. The results show that the doping can greatly reduce the elastic modulus of the material, reduce the hardening function value, be easy for the material processing. For the electrical properties, the material belongs to the direct bandgap semiconductor material after doping. When x> 0.25, the lattice is distorted due to the high doping concentration, and the electrical properties are similar to the undoped state. When x < 0.25, with the decrease of doping concentration, the conduction band shrinkage, the localized enhancement, band gap narrowing, reduce the energy requirement for electron stimulated transition. So the material after the doping shows semi-metallic with electrical conductivity enhancement.
Key words:  Cu  SnO2  first principles calculation  mechanical property  electrical property

友情链接LINKS