引用本文: | 许莹,王变,张孜孜,蔡艳青.酸-水热法辅以水热温度对钛材生物活性的影响[J].材料科学与工艺,2018,26(3):72-78.DOI:10.11951/j.issn.1005-0299.20170134. |
| XU Ying,WANG Bian,ZHANG Zizi,CAI Yanqing.Effect of acid-hydrothermal method and hydrothermal temperature on the bioactivity of titanium[J].Materials Science and Technology,2018,26(3):72-78.DOI:10.11951/j.issn.1005-0299.20170134. |
|
本文已被:浏览 1390次 下载 955次 |
码上扫一扫! |
|
酸-水热法辅以水热温度对钛材生物活性的影响 |
许莹1,2, 王变1,2, 张孜孜1,2, 蔡艳青1,2
|
(1.华北理工大学 材料科学与工程学院,河北 唐山 063000;2.河北省无机非金属重点实验室,河北 唐山 063000)
|
|
摘要: |
为提高医用钛材的生物活性,通过酸-水热复合法在其表面设计并制备了TiO2纳米棒,探讨水热温度对钛表面TiO2纳米棒形成的影响,然后对试样进行模拟体液生物活性实验,采用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)分析手段研究了钛表面生成产物的形貌、元素组成和物相组成.结果表明:随着水热温度的增加,二氧化钛层的表面形貌发生改变,从片状到棒状,之后纳米棒发生团聚;试样中金红石相和锐钛矿相的衍射峰强度随水热温度的增加而增强;水热温度为130 ℃时,钛表面可以形成尺寸均匀、长度基本一致的TiO2纳米棒,其厚度、长度和直径分别为2.5 μm、150 nm和10 nm,且纳米棒是由锐钛矿型和金红石型TiO2的混合相组成.模拟体液生物活性实验后,水热处理后材料表面有富含Ca、P的羟基磷灰石生成,而羟基磷灰石的形成主要与纳米棒的形成和膜层的厚度有关.其中,水热温度为130 ℃时形成的纳米棒结构较好,膜层较厚,其表面诱导磷灰石沉积的含量最多,具有较好的生物活性.
|
关键词: TiO2纳米棒 生物活性 形成机理 酸-水热法 羟基磷灰石 |
DOI:10.11951/j.issn.1005-0299.20170134 |
分类号:TG178 |
文献标识码:A |
基金项目:国家自然科学基金资助项目(51574109). |
|
Effect of acid-hydrothermal method and hydrothermal temperature on the bioactivity of titanium |
XU Ying1,2, WANG Bian1,2, ZHANG Zizi1,2, CAI Yanqing1,2
|
(1.School of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063000, China; 2.Key Laboratory of Inorganic Nonmetal of Hebei Province, Tangshan 063000, China)
|
Abstract: |
Aiming at improve the biological activity of medical titanium materials, TiO2 nanorods were prepared using the acid-hydrothermal method. The effect of the hydrothermal temperatures on titanium surface of the formation mechanism of TiO2 nanorods was studied. The samples were then used to simulate the biological activity in simulated body fluid (SBF). The morphology, elemental composition and the phase composition of production of titanium surface were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffrction (XRD). The results indicated that the morphology of TiO2 changed from schistose to rodlike, then to clusters with increasing the hydrothermal temperatures. XRD resulted showed the intensity of diffraction peaks of both the anatase phase and the rutlie phase enhanced with increasing the hydrothermal temperatures. For the case of 130 ℃ hydrothermal temperature, TiO2 nanorods with 2.5 μm in thickness, 150 nm in uniform size and 10 nm in length formed on the surface. Meanwhile, the nanorods were composed of a mixture of anatase and rutile phases. After a long term immersion in SBF, hydroxyapatite (HA) rich in Ca, and P was produced on the surface of the prepared materials. The formation of nanorods and the thickness of the coating exert a certain role on the formation of hydroxyapatite. When the hydrothermal treatment temperature is 130 ℃, the nanorods film layer is thicker, with the most hydroxyapatite (HA) on the mineralized surface and thus excellent biological activity.
|
Key words: TiO2 nanorods biological activity formation mechanism acid-hydrothermal method hydroxyapatite |