引用本文: | 刘明瑞,严飙,彭福军,彭雄奇,尹红灵.碳纤维/聚醚醚酮(PEEK)复合材料拉拔制管工艺设计和模拟[J].材料科学与工艺,2019,27(5):1-6.DOI:10.11951/j.issn.1005-0299.20190035. |
| LIU Mingrui,YAN Biao,PENG Fujun,PENG Xiongqi,YIN Hongling.Design and simulation of tube-making process with carbon fiber/ PEEK prepreg[J].Materials Science and Technology,2019,27(5):1-6.DOI:10.11951/j.issn.1005-0299.20190035. |
|
摘要: |
从太空制造角度出发,设计了一种碳纤维/聚醚醚酮(PEEK)预浸复合板料拉拔连续制管工艺.综合考虑了预浸复合板料的供料放卷过程、冲压、拉拔成形工步和超声焊接工序,并创造性的提出了卷曲拉挤成型方式.利用Johnson-Cook和Holzapfel-Gasser-Ogden模型构建了一种以PEEK为基体,以碳纤维编织布为增强体相互叠加的材料模型,通过实验数据确定材料参数.采用商业软件ABAQUS对各工序分步进行了地面条件下的有限元数值模拟,分析了预浸复合材料板材在供料放卷、冲压拉拔成形过程中的应力分布,并采用蔡-希尔最大变形能理论证明了本文设计的放卷模具和卷曲成形模具可以进行连续制管.在焊接过程中,分析了预浸料基体PEEK在焊接区域产生的Mises应力分布,证明了超声波焊接方案对管材表面质量的影响较小.模拟结果表明,所设计的连续拉拔制管工艺能够快速有效地生产出表面良好的管材.仿真结果可为后续复合材料在轨拉拔连续制管的工艺设计和制造提供借鉴. |
关键词: 碳纤维/PEEK预浸料 管材成形 拉拔工艺 数值模拟 叠层模型 |
DOI:10.11951/j.issn.1005-0299.20190035 |
分类号:TB332 |
文献标识码:A |
基金项目:上海市空间飞行器机构重点实验室开放课题(SCCA5000003). |
|
Design and simulation of tube-making process with carbon fiber/ PEEK prepreg |
LIU Mingrui1,YAN Biao2,PENG Fujun2,PENG Xiongqi1,YIN Hongling1
|
(1. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; 2. Shanghai Key Laboratory of Spacecraft Mechanism (Shanghai Aerospace Systems Engineering Institute), Shanghai 201108, China) [HJ1.2mm]
|
Abstract: |
From the perspective of outer space manufacturing, an in-orbit continuous tube-making process with carbon fiber/polyether ether ketone (PEEK) prepreg composite sheets was designed. The process was divided into four steps including material sending, stamping, drawing, and ultrasonic welding, and a new tube-making method involving thermo-stamping and pultrusion was put forward. The Johnson-cook model and Holzapfel-Gasser-Ogden model were used to construct a material model with PEEK as matrix and carbon fiber as reinforcement. The material parameters were determined by fitting experimental data. Finite element simulation of each step of the whole process under ground conditions was carried out by utilizing the commercial software ABAQUS. The stress distribution of the prepreg composite sheet during the feeding, stamping, and pultrusion processes was analyzed. The feasibility of the material sending, stamping, and drawing process was verified by using the Tsai-Hill criteria. During the welding process, the Mises stress distribution of the prepreg on the welded area was analyzed, which proved that the ultrasonic welding process had little effect on the surface quality of the tube. The simulation results show the proposed pultrusion process could make tubes with good surface quality and provide guidance for the process design and manufacture of the subsequent in-orbit composite tube forming. |
Key words: carbon fiber/PEEK prepreg tube-making pultrusion numerical simulation lamination model |