引用本文: | 李闽,刘敏.界面电聚合聚吡咯/碳纳米管复合膜及电容性能[J].材料科学与工艺,2020,28(1):66-73.DOI:10.11951/j.issn.1005-0299.20180329. |
| LI Min,LIU Min.Interfacial electropolymerization of free-standing PPY/FCNTs film and the capacitive performance[J].Materials Science and Technology,2020,28(1):66-73.DOI:10.11951/j.issn.1005-0299.20180329. |
|
摘要: |
制备具有多电子传输与多孔有序的结构电极是电化学储能技术创新发展的两个重要策略。本文采用动态固/液/液三相界域电化学聚合法(D3PIE)与纳米粒子液液界面组装技术相结合的方法,在高氯酸(HClO4)与三氯甲烷(CHCl3)构成的水/油界面上合成了聚吡咯/碳纳米管(PPY/CNTs)的复合薄膜材料。聚合反应前,将酸化后的碳纳米管组装在油水界面上,形成碳纳米管的柔性薄膜;聚合反应开始后,CNTs在油水界面形成强大的电子导电网络,构成聚吡咯的骨架,使得PPY/CNTs复合膜在油水界面生成。研究表明,界面组装的CNTs能促进复合膜的横向生长,CNTs越多,复合膜的表观面积增长越大,但过多的CNTs会影响聚合反应的传质,减缓复合膜纵向生长,当CNTs含量为0.082 μg/mm2时聚合反应电流达到最大。SEM测试表明复合膜具有正反两面各异的特殊形貌。电化学充放电测试表明,PPY/CNTs复合膜表现出优异的超级电容器电极材料的特性,具有较高的比电容(达到350 F/g)与较好的循环稳定性。 |
关键词: 聚吡咯 碳纳米管 复合膜 三相界域电化学 超级电容器 |
DOI:10.11951/j.issn.1005-0299.20180329 |
分类号:TB332 |
文献标识码:A |
基金项目:湖北省自然科学基金资助项目(2018CFB139). |
|
Interfacial electropolymerization of free-standing PPY/FCNTs film and the capacitive performance |
LI Min1,2, LIU Min3
|
(1.Department of Mechatronics Engineering, Wuhan Business University, Wuhan 430056, China;2.School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China; 3.State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China)
|
Abstract: |
The preparations of electrodes with multi electron transport and porous and hierarchical structures are two critical strategies for the innovative development of electrochemical energy storage technology. In this study, free-standing polypyrrole/carbon nanotubes (PPY/CNTs) composite film was electrosynthesized at the interface between an HClO4 aqueous solution and a pyrrole chloroform solution through a dynamic three-phase interline electropolymerization (D3PIE) process. First, acid-oxidized carbon nanotubes were assembled at an HClO4/CHCl3 interface after mechanical agitation to form a CNTs network. Then, the CNTs network acted as “reinforcement bars” for the electropolymerization of PPY, resulting in the production of PPY/CNTs composite film at the interface. Results indicated that higher CNTs areal density could cause a faster radial growth of PPY at the CNTs network, namely a faster growth of “apparent area” of the composite film. The current-time curves of the electropolymerization demonstrated that there was an optimal areal density of CNTs network (0.082 μg/mm2) to achieve the largest amount of polymerized PPY. SEM images showed that the prepared PPY/CNTs film exhibited significantly different microstructures between the side toward water and the side toward organic solvent. In addition, the prepared PPY/CNTs composite film exhibited excellent electrochemical performance with a high value of specific capacitance (350 F/g) and a good stability. |
Key words: polypyrrole CNTs composite film three-phase interline electropolymerization supercapacitor |