引用本文: | 段双陆,傅秀清,沈莫奇,王清清,马文科.回转体表面喷射电沉积Ni-P-ZrO2复合镀层耐腐蚀性能研究[J].材料科学与工艺,2020,28(4):73-81.DOI:10.11951/j.issn.1005-0299.20180401. |
| DUAN Shuanglu,FU Xiuqing,SHEN Moqi,WANG Qingqing,MA Wenke.Study on the corrosion resistance of Ni-P-ZrO2 composite coating deposited by spray electrodeposition on the surface of rotating body[J].Materials Science and Technology,2020,28(4):73-81.DOI:10.11951/j.issn.1005-0299.20180401. |
|
摘要: |
为延长回转体零件的使用寿命,提高其耐腐蚀性能,本文利用喷射电沉积技术在45钢外圆表面制备Ni-P合金镀层和Ni-P-ZrO2复合镀层,采用扫描电镜、腐蚀失重法和电化学测试分析等测试手段对Ni-P-ZrO2复合镀层、Ni-P合金镀层和45钢基体在50 g/L NaCl溶液中的表面形貌和耐腐蚀性能进行研究,并探究腐蚀机理。研究表明:Ni-P-ZrO2镀层相对Ni-P镀层表面致密度更高,缺陷较少;浸泡相同时间, Ni-P-ZrO2镀层的失重量最小,腐蚀速率最小;电化学测试实验中,Ni-P-ZrO2复合镀层的腐蚀电流最低(43.2×10-5 A/cm2),共沉积ZrO2颗粒后,Ni-P-ZrO2复合镀层容抗弧半径更大,极化电阻值Rp增大为Ni-P合金的3倍,双层电容值Cd由4.743 8 μF/cm2降低为3.887 2 μF/cm2。在相同条件下腐蚀后,Ni-P-ZrO2复合镀层的表面较为完好,腐蚀产物较少;Ni-P合金次之,有较多黑色腐蚀产物;45钢表面形貌最差。综上,采用喷射电沉积在回转体表面制备的Ni-P-ZrO2复合镀层相对Ni-P合金镀层和45钢基体表现出更优良的耐腐蚀性能。 |
关键词: 回转体零件 喷射电沉积 Ni-P-ZrO2复合镀层 耐腐蚀性能 腐蚀机理 |
DOI:10.11951/j.issn.1005-0299.20180401 |
分类号:TG174.44 |
文献标识码:A |
基金项目:国家大学生创新训练项目(20181037088);南京农业大学大学生创新训练计划项目(1830B18). |
|
Study on the corrosion resistance of Ni-P-ZrO2 composite coating deposited by spray electrodeposition on the surface of rotating body |
DUAN Shuanglu1, FU Xiuqing1,2, SHEN Moqi1, WANG Qingqing1, MA Wenke1
|
(1. College of Engineering, Nanjing Agricultural University, Nanjing 210095, China; 2.Key Laboratory of Intelligence Agricultural Equipment of Jiangsu Province, Nanjing 210031, China)
|
Abstract: |
To prolong the service life of rotating parts and improve their corrosion resistance, Ni-P alloy coating and Ni-P-ZrO2 composite coating were prepared on the outer circular surface of 45 steel by spray electrodeposition technology. Through scanning electron microscopy,corrosion weightlessness method, and electrochemical test and analysis, the surface morphology and corrosion resistance of Ni-P-ZrO2 composite coating, Ni-P alloy coating, and 45 steel matrix in 50 g/L NaCl solution were studied, and the corrosion mechanism was investigated. Results show that Ni-P-ZrO2 coating had higher surface density and fewer defects than Ni-P coating. Under the same soaking time, Ni-P-ZrO2 coating had the minimum weight loss and corrosion rate. Electrochemical test showed that the corrosion current of the Ni-P-ZrO2 composite coating was the lowest (43.2×10-5 A/cm2). After co-deposition of ZrO2 particles, the arc radius of the capacitive resistance of the Ni-P-ZrO2 composite coating was larger, the polarization resistance Rp increased to 3 times more than that of the Ni-P alloy, and the double-layer Capacitance Cd decreased from 4.743 8 μF/cm2 to 3.887 2 μF/cm2. After etching, the scanning electron microscopy results indicate that under the same conditions,the surface of the Ni-P-ZrO2 composite coating was relatively intact with few corrosion products, followed by the Ni-P alloy with more black corrosion products, and the surface morphology of the 45 steel was the worst. To conclude, the Ni-P-ZrO2 composite coating prepared by spray electrodeposition on the surface of the rotating body exhibited better corrosion resistance than the Ni-P alloy coating and the 45 steel substrate. |
Key words: rotating body parts spray electrodeposition Ni-P-ZrO2 composite coating corrosion resistance corrosion mechanism |