引用本文: | 吕亚森,王连东,王晓迪,秦存腾.带壁厚偏差管坯液压胀形加载路径的研究[J].材料科学与工艺,2021,29(1):38-46.DOI:10.11951/j.issn.1005-0299.20200148. |
| LÜ Yasen,WANG Liandong,WANG Xiaodi,QIN Cunteng.Research on the loading path of hydroforming for tube with wall thickness deviation[J].Materials Science and Technology,2021,29(1):38-46.DOI:10.11951/j.issn.1005-0299.20200148. |
|
本文已被:浏览 535次 下载 797次 |
 码上扫一扫! |
|
带壁厚偏差管坯液压胀形加载路径的研究 |
吕亚森1,4,王连东1,3,王晓迪2,秦存腾1
|
(1.燕山大学 车辆与能源学院,河北 秦皇岛066004;2.燕山大学 机械工程学院,河北 秦皇岛066004; 3.秦皇岛市液压胀形工程技术研究中心,河北 秦皇岛066000;4.中国重型汽车集团有限公司,济南 250101)
|
|
摘要: |
建立了带壁厚偏差管坯液压胀形的力学模型,揭示了不同轴向应力状态下壁厚偏差对管坯成形的影响规律,给出了带壁厚偏差管坯液压胀形加载路径设计的标准。针对某重型卡车桥壳预成形管坯的液压胀形工艺,进行了3种不同壁厚偏差管坯在不同典型加载路径下的有限元模拟,结果表明:内压升高至最大保持恒定,管坯薄壁侧均在合模前发生开裂且薄壁侧与厚壁侧变形差异较大;内压先升高后降低,管坯厚壁侧均失稳形成褶皱且薄壁侧与厚壁侧变形差异较小;内压先升高后降低再升高时,管坯均成形且符合工艺要求,确定了适用于带壁厚偏差管坯液压胀形的加载路径。在专用液压机上进行了液压胀形试验,试验结果与数值模拟所得规律一致。 |
关键词: 壁厚偏差 管坯 液压胀形 加载路径 极限胀形系数 |
DOI:10.11951/j.issn.1005-0299.20200148 |
分类号:TG316 |
文献标识码:A |
基金项目:河北省自然科学基金资助项目(E2016203352);河北省重大科技成果转化专项资助项目(20282202Z). |
|
Research on the loading path of hydroforming for tube with wall thickness deviation |
Lü Yasen1,4, WANG Liandong1,3, WANG Xiaodi2, QIN Cunteng1
|
(1.College of Vechiles and Energy, Yanshan University, Qinhuangdao 066004 ,China; 2. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China; 3.Qinhuangdao Hydroforming Engineering Technology Research Center, Qinhuangdao 066004, China; 4.China National Heavy Duty Truck Group Co., LTD., Jinan 250101)
|
Abstract: |
A mechanical model of hydroforming for tube with wall thickness deviation was established. The influence of wall thickness deviation on tube blank forming under different axial stress states was revealed. The standard for the design of the hydroforming loading path of tube blank with wall thickness deviation is provided. For the hydroforming process of the preformed tube blank of a heavy truck′s axle-housing, the simulation of three different wall thickness tubes under different typical loading paths was carried out. When the internal pressure increases to the maximum value and remains constant, the thin-wall side of the tube blanks cracks before die closing and the deformation difference between the thin-wall side and the thick-wall side is large. When the internal pressure increases first and then decreases, all the thick-wall side of the tube blanks are unstable to form folds and the deformation difference between the thin-wall side and the thick-wall side is small. When the internal pressure first increases, then decreases, and finally increases, the tube blank will be formed and meet the process requirements. The loading path suitable for hydroforming of tube blank with wall thickness deviation is determined. The hydroforming test was carried out on a special hydraulic press, and the obtained experiment results were consistent with the numerical simulation. |
Key words: wall thickness deviation tube blank hydroforming loading path limit bulging coefficient |