期刊检索

  • 2024年
  • 2023年第31卷
  • 2022年第30卷
  • 2021年第29卷
  • 2020年第28卷
  • 2019年第27卷
  • 2018年第26卷
  • 2017年第25卷
  • 2016年第24卷
  • 2015年第23卷
  • 2014年第22卷
  • 2013年第21卷
  • 2012年第20卷
  • 2011年第19卷
  • 2010年第18卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 中国材料研究学会
哈尔滨工业大学
主编 苑世剑 国际刊号ISSN 1005-0299 国内刊号CN 23-1345/TB

期刊网站二维码
微信公众号二维码
引用本文:王梦晓,徐进,苏云鹏,顾佳烨,孙纳纳,周大雨.面向基因测序芯片应用的TiN电极薄膜制备及性能研究[J].材料科学与工艺,2023,31(6):1-8.DOI:10.11951/j.issn.1005-0299.20230205.
WANG Mengxiao,XU Jin,SU Yunpeng,GU Jiaye,SUN Nana,ZHOU Dayu.Preparation and properties of TiN electrode films for gene sequencing chip applications[J].Materials Science and Technology,2023,31(6):1-8.DOI:10.11951/j.issn.1005-0299.20230205.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 4108次   下载 2539 本文二维码信息
码上扫一扫!
分享到: 微信 更多
面向基因测序芯片应用的TiN电极薄膜制备及性能研究
王梦晓1,徐进2,苏云鹏3,顾佳烨3,孙纳纳1,周大雨1
(1. 三束材料改性教育部重点实验室(大连理工大学 材料科学与工程学院),辽宁 大连 116024;2.大连芯材薄膜技术有限公司,辽宁 大连 116085;3.成都今是科技有限公司,成都 610041)
摘要:
基因测序技术正处于快速发展阶段,作为灵敏度极高的测序技术——纳米孔测序,对薄膜电极的电阻率和储能特性提出了更高的要求。为了降低薄膜的电阻率并提高储能特性,本文利用反应磁控溅射方法,基于原位生长原理,分别制备了TiOxNy和Ti/TiN/TiOxNy电极薄膜。采用扫描电子显微镜、X射线衍射仪和电化学工作站对薄膜的微观结构、化学成分及其电化学性能进行研究。结果表明,在TiN高导电性和TiOxNy高比表面积的协同作用下,Ti/TiN/TiOxNy电极薄膜表现出优异的电化学性能。当电流密度为0.15 mA/cm2时获得7.01 mF/cm2的比电容,是TiOxNy电极薄膜比电容值的1.3倍。同时,与TiOxNy单电极相比,Ti/TiN/TiOxNy电极薄膜电阻降低约2个数量级。分析发现:将致密结构的TiN用作集流体引入疏松多孔的TiOxNy单电极中,可以有效降低Ti/TiN/TiOxNy体系内阻,同时保持良好的比电容,可为磁控溅射方法制备高性能基因测序芯片电极提供理论基础。
关键词:  基因测序  第四代DNA测序技术  磁控溅射  TiN电极薄膜  电化学性能
DOI:10.11951/j.issn.1005-0299.20230205
分类号:TB34
文献标识码:A
基金项目:国家自然科学基金资助项目(51972037).
Preparation and properties of TiN electrode films for gene sequencing chip applications
WANG Mengxiao1, XU Jin2, SU Yunpeng3, GU Jiaye3, SUN Nana1, ZHOU Dayu1
(1.Key Laboratory of Three-beam Material Modification (School of Materials Science and Engineering, Dalian University of Technology), Ministry of Education, Dalian 116024, China; 2.Dalian Chip Materials & Thin Film Technology Co., Ltd., Dalian 116085,China; 3.Geneus Technology (Chengdu) Co., Ltd., Chengdu 610041, China)
Abstract:
Gene sequencing technology is currently in a rapid development stage. As a highly sensitive sequencing method, nanopore sequencing demands higher requirements on the resistivity and energy storage characteristics of film electrodes. In order to reduce the resistivity of the film and improve its energy storage characteristics, TiOxNy and Ti/TiN/TiOxNy electrode films were prepared using the reactive magnetron sputtering method based on the in-situ growth principle. The films were analyzed in terms of the microstructure, chemical composition, and electrochemical properties using scanning electron microscopy, X-ray diffractometer, and an electrochemical workstation. The results indicated that the Ti/TiN/TiOxNy electrode film exhibits excellent electrochemical properties due to the synergistic effect of the high conductivity of TiN fluid collector and high specific surface area of TiOxNy porous electrode.At a current density of 0.15 mA/cm2, a specific capacitance of 7.01 mF/cm2 was obtained, which is 1.3 times higher than that of the TiOxNy electrode film. Meanwhile, the resistance of the Ti/TiN/TiOxNy electrode film decreased by approximately two orders of magnitude compared to that of the TiOxNy single electrode.It has been found that introducing TiN with a dense structure as a fluid collector into the porous TiOxNy single electrode can effectively reduce the internal resistance of the Ti/TiN/TiOxNy system while maintaining excellent specific capacitance. This finding provides a foundation for preparing high-performance gene sequencing chip electrodes by magnetron sputtering.
Key words:  gene sequencing  fourth-generation DNA sequencing technology  magnetron sputtering  TiN electrode film  electrochemical performance

友情链接LINKS