期刊检索

  • 2024年第32卷
  • 2023年第31卷
  • 2022年第30卷
  • 2021年第29卷
  • 2020年第28卷
  • 2019年第27卷
  • 2018年第26卷
  • 2017年第25卷
  • 2016年第24卷
  • 2015年第23卷
  • 2014年第22卷
  • 2013年第21卷
  • 2012年第20卷
  • 2011年第19卷
  • 2010年第18卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 中国材料研究学会
哈尔滨工业大学
主编 苑世剑 国际刊号ISSN 1005-0299 国内刊号CN 23-1345/TB

期刊网站二维码
微信公众号二维码
引用本文:杨熠奕,马小平,苏三庆,王威.低周疲劳下对接焊缝累积塑性损伤的金属磁记忆表征研究[J].材料科学与工艺,2024,32(6):87-98.DOI:10.11951/j.issn.1005-0299.20230040.
YANG Yiyi,MA Xiaoping,SU Sanqing,WANG Wei.Research on characterization of cumulative plastic damage in butt weld under low cycle fatigue using metal magnetic memory[J].Materials Science and Technology,2024,32(6):87-98.DOI:10.11951/j.issn.1005-0299.20230040.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 8次   下载 4 本文二维码信息
码上扫一扫!
分享到: 微信 更多
低周疲劳下对接焊缝累积塑性损伤的金属磁记忆表征研究
杨熠奕1, 马小平2, 苏三庆3, 王威3
(1.陕西交通职业技术学院,西安 710018;2.中铁第一勘察设计院集团有限公司 建筑与规划设计研究院/TOD研发中心,西安 710043;3.西安建筑科技大学 土木工程学院,西安 710055)
摘要:
地震载荷下的钢构件,因低周疲劳所致的塑性损伤累积而诱发严重的断裂破坏。金属磁记忆作为一种新兴无损检测技术,已被证明可用于钢构件的疲劳损伤表征。为改善既有力-磁耦合理论及数值模拟方法的局限性,实现焊接件塑性损伤的无损评估,本文利用磁记忆技术对低周疲劳下对接焊缝的累积塑性损伤进行了表征分析。针对焊接构件的非均匀磁化问题,基于既有理论模型并改进模拟方法,实现了低周疲劳下焊接件的力-磁耦合有限元模拟。同时,通过Q345qC焊接件的低周疲劳及磁信号检测实验,分析了法向磁信号HSF(z)及其特征参数的变化规律,由对比实验与模拟结果可以发现,磁信号曲线在焊接位置均出现明显的突变现象,磁信号峰-谷梯度Kp-v随累积塑性损伤D的增大均呈指数递减,二者平均误差不超过5%,证明了模拟方法的准确性。在此基础上,建立了低周疲劳下焊接件Kp-v与D的量化关系,验证了磁信号峰-谷梯度具有表征钢材塑性累积损伤程度的潜在可能,可为定量评价焊接试件的塑性损伤提供参考。
关键词:  低周疲劳  累积塑性损伤  金属磁记忆  力-磁耦合  损伤表征
DOI:10.11951/j.issn.1005-0299.20230040
分类号:TU115.28
文献标识码:A
基金项目:国家自然科学基金面上项目(51878548,51578449);中铁第一勘察设计院集团有限公司科研开发项目(2022KY51ZD(ZNJC)-03);陕西高校青年创新团队;2023年陕西交通职业技术学院科研创新团队基金项目;陕西省自然科学基础研究计划(2024JC-YBQN-0609);陕西交通职业技术学院院级课题资助项目(YJ23003).
Research on characterization of cumulative plastic damage in butt weld under low cycle fatigue using metal magnetic memory
YANG Yiyi1, MA Xiaoping2, SU Sanqing3, WANG Wei3
(1.Shanxi College of Communications Technology, Xian 710018, China; 2.Research Institute of Architectural & Planning Design/Research Center of Transit Oriented Development, China Railway First Survey and Design Institute Group Co., LTD., Xian 710043, China; 3. School of Civil Engineering, Xian University of Architecture & Technology, Xian 710055, China)
Abstract:
Steel members under seismic load often suffer from severe fracture damage due to the accumulation of plastic damage caused by low cycle fatigue. As an emerging nondestructive testing technology, metal magnetic memory has been proven to be useful for the fatigue damage characterization of steel members. In order to overcome the limitations of current magneto-mechanical coupling theories and numerical simulations, and enable nondestructive evaluation of plastic damage in welded specimens, magnetic memory technology was used to characterize the cumulative plastic damage of butt welds subjected to low cycle fatigue. A magneto-mechanical coupling finite element simulation of welded specimens was conducted to address the issue of non-uniform magnetization in welded components, utilizing an improved simulation method based on an existing theoretical model. Moreover, the variation law and characteristic parameters of normal magnetic signal HSF(z) on the surface were studied through low cycle fatigue and magnetic signal detection tests for the Q345qC welded specimen. Based on the experimental and simulation results, it is clear that the HSF(z) signal curve exhibits a noticeable sudden change at the welding location. Additionally, the gradient of the peak-valley (Kp-v) decreases exponentially with the progressive accumulation of plastic damage (D). The experimental and simulation methods have an average error of less than 5%, demonstrating their accuracy. A quantitative relationship for Kp-v-D in welded specimens was established, validating that Kp-v has the ability to reflect the cumulative plastic damage of steel when subjected to low cycle fatigue. This provides a benchmark for the quantitative evaluation of cumulative plastic damage of welded parts.
Key words:  low cycle fatigue  cumulative plastic damage  metal magnetic memory  magneto-mechanical coupling  damage characterization

友情链接LINKS