引用本文: | 杜高明,康大伟,贾帅德,张宁,梅碧舟,张刚强,孟庆坤,戚继球,张长江.玄武岩-玻璃纤维/SiO2气凝胶复合材料耐高温及抗火性能研究[J].材料科学与工艺,2025,33(1):22-30.DOI:10.11951/j.issn.1005-0299.20240223. |
| DU Gaoming,KANG Dawei,JIA Shuaide,ZHANG Ning,MEI Bizhou,ZHANG Gangqiang,MENG Qingkun,QI Jiqiu,ZHANG Changjiang.High-temperature resistance and fire performance of basalt-glass fiber/SiO2 aerogel composites[J].Materials Science and Technology,2025,33(1):22-30.DOI:10.11951/j.issn.1005-0299.20240223. |
|
|
|
本文已被:浏览 38次 下载 14次 |
 码上扫一扫! |
|
玄武岩-玻璃纤维/SiO2气凝胶复合材料耐高温及抗火性能研究 |
杜高明1,康大伟2,贾帅德2,张宁3,梅碧舟4,张刚强4,孟庆坤2,戚继球2,张长江5
|
(1. 江苏华通工程技术有限公司,南京210014; 2.中国矿业大学 材料与物理学院,江苏 徐州221116;3. 徐州木牛流马机器人科技有限公司,江苏 徐州221000; 4.浙江易锻精密机械有限公司,浙江 宁波315702;5.太原理工大学 材料科学与工程学院,太原030024)
|
|
摘要: |
为提高钢结构桥梁抵抗火灾风险的能力,桥梁抗火隔热材料的开发受到重视。针对目前专用桥梁抗火材料的不足,本文以玄武岩-玻璃纤维复合材料为基体,以正硅酸乙酯作为硅源,采用溶胶凝胶和超临界干燥法制备SiO2气凝胶复合材料(BF-GF/AC),系统研究复合材料在高温和燃烧测试前后的宏观尺寸、微观形貌、相组成、力学性能及热导率的变化。结果表明:相对于单纯玻璃纤维/气凝胶复合材料,玄武岩纤维使BF-GF/AC的尺寸和微观结构的稳定性都明显提升;BF-GF/AC纤维和气凝胶可以实现协同隔热效果,在1 000 ℃处理后气凝胶仍然保持非晶态;随热处理温度的升高,气凝胶复合材料的力学性能下降而热导率升高,BF-GF/AC在900 ℃热处理后抗拉强度和热导率分别0.431 MPa和0.026 W/(m·K);烃类火中,由10 mm厚BF-GF/AC组成的防火层结构完整,缆索模型表面低于300 ℃时间达到100.4 min。开发的气凝胶复合材料在高温和真火中具有良好的结构稳定性、较低的热导率和一定的力学性能,可以满足桥梁防火设防标准。 |
关键词: 桥梁防火 气凝胶复合材料 玄武岩纤维 热导率 燃烧实验 |
DOI:10.11951/j.issn.1005-0299.20240223 |
分类号:TB35 |
文献标识码:A |
基金项目:徐州市科技成果转化项目(KC22441);徐州市重点研发计划项目(KC22418). |
|
High-temperature resistance and fire performance of basalt-glass fiber/SiO2 aerogel composites |
DU Gaoming1, KANG Dawei2, JIA Shuaide2, ZHANG Ning3, MEI Bizhou4, ZHANG Gangqiang4, MENG Qingkun2, QI Jiqiu2, ZHANG Changjiang5
|
(1.Jiangsu Huatong Engineering Technology Co., Ltd., Nanjing 210014,China; 2.School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116,China; 3.Xuzhou Muniu Liuma Robot Technology Co., Ltd., Xuzhou 221000, China; 4.Zhejiang Yiduan Precision Machinery Co., Ltd., Ningbo 315702, China; 5.School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024,China)
|
Abstract: |
To bolster the fire resistance of steel structures in bridge construction, the advancement of fireproof insulating materials tailored for bridges has become a focal point of attention. In response to the current shortcomings of specialized fire-resistant materials for bridges, this paper utilizes basalt-glass fiber composite as the matrix and tetraethyl orthosilicate (TEOS) as the silicon source to prepare a SiO2 aerogel composite (BF-GF/AC) through sol-gel and supercritical drying methods. A comprehensive investigation was undertaken to assess the alterations in macro-dimensions, micro-morphology, phase composition, mechanical attributes, and thermal conductivity of the composite, both prior to and following high-temperature and combustion trials. The findings reveal that the incorporation of basalt fibers markedly enhances the dimensional and microstructural stability of BF-GF/AC, in comparison to composites solely composed of glass fiber and aerogel. The harmonious interaction between the fibers and aerogel facilitates exceptional thermal insulation, with the aerogel maintaining its amorphous configuration even after exposure to temperatures as high as 1 000 ℃. As the heat treatment temperature escalates, the mechanical properties of the aerogel composite diminish while its thermal conductivity rises. Notably, after treatment at 900 ℃, the BF-GF/AC displays a tensile strength of 0.431 MPa and a thermal conductivity of 0.026 W/(m·K). In the context of hydrocarbon fires, a fireproof layer constructed from 10 mm thick BF-GF/AC remained uncompromised, ensuring that the surface temperature of the cable model remained below 300 ℃ for a duration of up to 100.4 minutes. The aerogel composite developed in this study demonstrates good structural stability, low thermal conductivity, and reasonable mechanical properties under high temperatures and direct flame exposure, meeting the fire protection standards for bridges. |
Key words: bridge fire protection aerogel composites basalt fiber burning test thermal conductivity |
|
|
|
|