期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:于德亮,唐海燕,丁宝,张永明,齐维贵.基于粒子群优化模糊核聚类的电梯群交通模式识别[J].哈尔滨工业大学学报,2012,44(10):84.DOI:10.11918/j.issn.0367-6234.2012.10.018
YU De-liang,TANG Hai-yan,DING Bao,ZHANG Yong-ming,QI Wei-gui.Elevator traffic mode identification with kernel fuzzy clusteringbased on particle swarm optimization[J].Journal of Harbin Institute of Technology,2012,44(10):84.DOI:10.11918/j.issn.0367-6234.2012.10.018
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 2836次   下载 1526 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于粒子群优化模糊核聚类的电梯群交通模式识别
于德亮, 唐海燕, 丁宝, 张永明, 齐维贵
哈尔滨工业大学 电气工程及自动化学院, 150001 哈尔滨
摘要:
为了改善电梯群控系统的性能,使电梯群节能并高效运行,针对不同的交通模式采用合理的调度算法对电梯群进行优化调度,提出一种基于粒子群(PSO)的模糊核聚类算法(KFCM)的电梯交通流模式识别方法.利用基于梯度下降的粒子群优化算法代替KFCM算法的迭代过程,可使算法具有较强的全局搜索能力和局部搜索能力,并降低了KFCM算法对初始值的敏感度.利用核方法将低维特征空间的样本映射到高维特征空间,增加对样本特征的优化,并使样本特征在高维特征空间线性可分,更加容易聚类.采用在某办公楼采集的电梯交通流数据作为测试样本,仿真结果表明,与FCM聚类算法相比,该算法具有良好的性能指标,对电梯交通流的聚类效果更准确.
关键词:  节能控制  交通模式  电梯群  粒子群  模糊核  聚类
DOI:10.11918/j.issn.0367-6234.2012.10.018
分类号:TP273
基金项目:“十一五”国家科技支撑计划重大项目(2006BAJ03A05-04).
Elevator traffic mode identification with kernel fuzzy clusteringbased on particle swarm optimization
YU De-liang, TANG Hai-yan, DING Bao, ZHANG Yong-ming, QI Wei-gui
School of Electrical Engineering and Automation, Harbin Institute of Technology, 150001 Harbin, China
Abstract:
The elevator group is scheduled by suitable algorithm according to different traffic mode, and the performance of the elevator group control system will be improved. The kernel fuzzy clustering(KFCM) algorithm based on particle swarm optimization(PSO) is proposed to identify the elevator traffic mode. The iterative process based on gradient descent in KFCM algorithm is replaced by PSO algorithm, which has stronger global search capability and local search capability. Meanwhile the sensitivity to initial value of the FCM algorithm is decreased. By using kernel method, the sample in the low-dimensional feature space is mapped into high-dimensional feature space. And the sample feature is optimized and can be linearly divided in high-dimensional feature space so that clustering could be performed efficiently. The elevator traffic flow data collected from some office building is regard as the test sample. The simulation results show that the algorithm proposed has better performance indices compared with FCM algorithm, and the clustering effect of elevator traffic flow is more exact.
Key words:  energy-saving control  traffic mode  elevator group  particle swarm optimization  fuzzy kernel  clustering

友情链接LINKS