期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:姜述强,金鸿章,魏凤梅.可容错的遥控水下机器人递归神经网络控制[J].哈尔滨工业大学学报,2013,45(9):57.DOI:10.11918/j.issn.0367-6234.2013.09.011
JIANG Shuqiang,JIN Hongzhang,WEI Fengmei.A fault-tolerable recurrent neural network controller for remote operated vehicle[J].Journal of Harbin Institute of Technology,2013,45(9):57.DOI:10.11918/j.issn.0367-6234.2013.09.011
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 2205次   下载 1599 本文二维码信息
码上扫一扫!
分享到: 微信 更多
可容错的遥控水下机器人递归神经网络控制
姜述强1, 金鸿章1, 魏凤梅2,3
(1.哈尔滨工程大学 自动化学院, 150001 哈尔滨; 2.哈尔滨工程大学 计算机科学与技术学院, 150001 哈尔滨;3.哈尔滨学院 工学院, 150086 哈尔滨) 
摘要:
针对遥控水下机器人(ROV)需要长时间稳定可靠工作的问题,提出递归模糊神经网络及可容错分配推力的控制方法.使用扩展函数链改进递归模糊神经网络控制器,提高了控制器对机器人非线性特性的识别和处理能力;基于反向梯度传播原理,由能量函数设计了该网络的学习算法,并根据微粒群优化确定学习率参数,从而保证整个网络的收敛性;在推力分配方面,针对开架式遥控水下机器人的两种推力器布置形式进行建模,将容错问题转化为对偶优化问题,建立能量函数实现故障条件下的推力优化分配.实验结果表明,所设计控制器不仅增强了遥控水下机器人对干扰的反应能力,并且提高了对机器人非线性特性的控制能力,减少了控制误差.当部分主推或侧推等推力器失效时,仍可以通过推力优化分配实现机器人在水平面上的准确位置控制,从而保证了遥控水下机器人长时间可靠工作.
关键词:  遥控水下机器人  递归神经网络  扩展函数链  推力分配  容错控制
DOI:10.11918/j.issn.0367-6234.2013.09.011
分类号:
基金项目:国家自然科学基金资助项目(9,0);高等学校博士学科点专项科研基金(20122304120003).
A fault-tolerable recurrent neural network controller for remote operated vehicle
JIANG Shuqiang1, JIN Hongzhang1, WEI Fengmei2,3
(1. College of Automation,Harbin Engineering University, 150001 Harbin, China; 2. College of Computer Science and Technology, Harbin Engineering University, 150001 Harbin, China; 3.School of Technology,Harbin University, 150086 Harbin, China)
Abstract:
A fuzzy recurrent neural network controller with fault tolerable thrust allocation control strategy has been proposed for Remote Operated Vehicles (ROV). Extended functional link is issued for fuzzy recurrent neural network controller to improve the ability of identification and response. Online training algorithm is developed based on gradient descent method. The learning rate parameters are determined according to particle swarm optimization, hence the whole network convergence is guaranteed. On the aspect of force allocation, a model has been established according to thruster positions for open frame remote operated vehicles based on which the fault tolerable problem has been transformed into dual optimization problem. The energy function concerning ROV control has been established so as to obtain thrust optimal allocation under fault conditions. Experiments have demonstrated that the controller can improve the ROV capacity to handle nonlinear characteristics and strong disturbance, reduce control errors. When one of main or side thrust fails, the controller can still accomplish precise horizontal position control through thrust optimization allocation strategy. Therefore, the reliable operation of ROV for the long time-span has been improved.
Key words:  ROV  recurrent neural network  Extended functional link  duality principle  thrust allocation  fault tolerance control 

友情链接LINKS