期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:张文明,葛耀君.双主跨悬索桥颤振节段模型试验模态匹配问题[J].哈尔滨工业大学学报,2013,45(12):90.DOI:10.11918/j.issn.0367-6234.2013.12.016
ZHANG Wenming,GE Yaojun.Mode matching problem of sectional model flutter tests for a suspension bridge with double main spans[J].Journal of Harbin Institute of Technology,2013,45(12):90.DOI:10.11918/j.issn.0367-6234.2013.12.016
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1969次   下载 1505 本文二维码信息
码上扫一扫!
分享到: 微信 更多
双主跨悬索桥颤振节段模型试验模态匹配问题
张文明1, 葛耀君2
(1.东南大学 混凝土及预应力混凝土结构教育部重点实验室, 210096 南京; 2. 同济大学 土木工程防灾国家重点实验室, 200092 上海)
摘要:
多主跨悬索桥颤振节段模型风洞试验存在模态匹配问题,为了明确该类试验如何匹配竖弯模态与扭转模态以及哪种弯扭模态组合的颤振临界风速最低,以马鞍山大桥为工程背景,根据模态相似性匹配出3种弯扭模态组合,在节段模型风洞试验中测试了各组合的颤振临界风速,并对结果进行比较分析.结果表明:相同攻角下,一阶反对称竖弯与一阶反对称扭转模态组合的颤振临界风速最低,因此该组合是双主跨悬索桥二维颤振的控制组合;相同攻角下,一阶对称竖弯与一阶对称扭转模态组合的颤振临界风速略高于一阶反对称竖弯与一阶对称扭转模态组合的颤振临界风速;古典耦合颤振的Van der Put公式和Selberg公式能够预测各组合的颤振临界风速相对大小关系,但不能准确预测颤振临界风速数值.
关键词:  三塔悬索桥  颤振  节段模型试验  模态相似性  模态匹配
DOI:10.11918/j.issn.0367-6234.2013.12.016
分类号:
基金项目:国家自然科学基金(51208104);江苏省自然科学基金(BK2012344);教育部高等学校博士学科点专项科研基金(20120092120018).
Mode matching problem of sectional model flutter tests for a suspension bridge with double main spans
ZHANG Wenming1, GE Yaojun2
(1. Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, 210096 Nanjing, China; 2. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, 200092 Shanghai, China)
Abstract:
Mode matching problem exists in sectional model flutter tests for a suspension bridge with double main spans. It is necessary to figure out how to match bending modes with torsional modes and seek the mode combination with minimal flutter critical wind speed. According to mode similarity of the Maanshan bridge, three mode combinations were selected. Flutter critical wind speed of every mode combination was tested in wind tunnel tests of sectional bridge model, and then these results of wind tunnel tests were analyzed. The research results show that the mode combination with minimal flutter critical wind speed is the combination matched by first-order antisymmetric vertical bending mode and first-order antisymmetric torsional mode, and it is the key mode combination for flutter of a suspension bridge with double main spans. The flutter critical wind speed for the mode combination of first-order symmetric vertical bending mode and first-order symmetric torsional mode is slightly greater than that for the mode combination of first-order antisymmetric vertical bending mode and first-order symmetric torsional mode. As for empirical formulas of classical coupled flutter, the Van der Put formula and the Selberg formula can estimate the relative value relationship of flutter critical wind speeds for different mode combination, but can’t estimate accurate values.
Key words:  suspension bridge with triple towers  flutter  test of sectional bridge model  similarity between modes  mode matching

友情链接LINKS