期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:郭孜政,谭永刚,马国忠,潘毅润,陈崇双.基于BP神经网络的驾驶精神疲劳识别方法[J].哈尔滨工业大学学报,2014,46(8):118.DOI:10.11918/j.issn.0367-6234.2014.08.020
GUO Zizheng,TAN Yonggang,MA Guozhong,PAN Yirun,CHEN Chongshuang.Recognition method of driving mental fatigue based on BP neural network[J].Journal of Harbin Institute of Technology,2014,46(8):118.DOI:10.11918/j.issn.0367-6234.2014.08.020
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1754次   下载 1326 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于BP神经网络的驾驶精神疲劳识别方法
郭孜政1,2,谭永刚1,马国忠1,潘毅润1,陈崇双1
(1.西南交通大学 交通运输与物流学院,610031 成都;2.中国科学院心理研究所,100101 北京)
摘要:
为了对驾驶精神疲劳予以有效识别,基于行为绩效结合心电信号指标构建了一种驾驶精神疲劳识别方法.以驾驶行为绩效为客观测评指标,给出了驾驶精神疲劳状态的分级划分方法.在此基础上,以心率变异性的6项指标作为疲劳识别特征因子,采用BP神经网络模型,建立了驾驶精神疲劳状态分类器.最后结合实例,依据驾驶行为绩效,将疲劳状态划分为2级,采用10名驾驶员连续4 h的驾驶行为绩效(反应时)、心电数据,对模型、方法予以测算.结果表明,10名驾驶员平均正确识别率在71%~80%之间,且其平均正确识别率为73%.BP神经网络模型与心率变异性指标相结合可有效的识别疲劳.
关键词:  驾驶行为  精神疲劳  识别方法  心率变异性  BP神经网络
DOI:10.11918/j.issn.0367-6234.2014.08.020
分类号:U491
基金项目:国家自然科学基金资助项目(0,0).
Recognition method of driving mental fatigue based on BP neural network
GUO Zizheng1,2, TAN Yonggang1, MA Guozhong1, PAN Yirun1, CHEN Chongshuang1
(1.School of Transportation and Logistics, Southwest Jiaotong University, 610031 Chengdu, China; 2. Institute of Psychology Chinese Academy of Sciences, 100101 Beijing, China)
Abstract:
To recognize driving mental fatigue efficiently, this study constructs a recognition method based on ECG. The method proposes hierarchy partition of state of driving mental fatigue by using driving behavior performance as objective evaluation indexes. Meanwhile, taking 6 indexes of HRV as fatigue recognition characterization factors and BP artificial neural network model, this paper establishes the recognition model for state of driving mental fatigue. Finally, according to examples, the mental fatigue is divided into two classifications. Collecting 4 hours continual driving behavior performance and ECG data from 10 drivers to test the model, the result shows that the average recognition accuracy rate is between 71% and 80%, and the average accuracy rate is 73%. The combination of BP neural network model and HRV indexes could recognize fatigue effectively.
Key words:  driving behavior  mental fatigue  recognition method  HRV  BP neural network

友情链接LINKS