引用本文: | 张博一,李前程,王伟,路胜卓.大型浮顶储油罐爆炸动力响应及破坏机理[J].哈尔滨工业大学学报,2014,46(10):23.DOI:10.11918/j.issn.0367-6234.2014.10.004 |
| ZHANG Boyi,LI Qiancheng,WANG Wei,LU Shengzhuo.Dynamic response and failure mechanism of the large floating roof oil tanks under blast loading[J].Journal of Harbin Institute of Technology,2014,46(10):23.DOI:10.11918/j.issn.0367-6234.2014.10.004 |
|
本文已被:浏览 1584次 下载 1451次 |
码上扫一扫! |
|
大型浮顶储油罐爆炸动力响应及破坏机理 |
张博一1,2, 李前程3, 王伟1,2, 路胜卓4
|
(1. 哈尔滨工业大学 结构工程控制与灾变教育部重点实验室,150090 哈尔滨; 2. 哈尔滨工业大学 土木工程学院, 150090 哈尔滨;3. 哈尔滨工业大学 航天学院,150001 哈尔滨; 4. 哈尔滨工程大学 航天与建筑工程学院,150001 哈尔滨)
|
|
摘要: |
为研究大型浮顶储油罐结构在可燃气体爆炸作用下的变形破坏机理,根据Von Mises屈服条件和强度理论,建立了储油罐结构在爆炸荷载作用下的广义屈服函数和失效破坏准则,利用显示非线性动力有限元软件LS-DYNA,采用ALE流固耦合算法,对爆炸作用下容积为15×104 m3的大型浮顶储油罐结构的罐壁位移、加速度、应力、应变等动态力学响应进行了数值模拟,计算结果表明:浮顶油罐的失效破坏模式为迎爆面顶部罐壁产生内凹塌陷和屈曲变形,迎爆面中部驻点区首先屈服并带动相邻部分达到屈服状态,同时在变形区周围明显形成不规则的塑性铰环,导致罐壁产生内凹屈曲.爆炸作用下,罐内液体既对罐壁产生一定的冲击作用,也能吸收和耗散部分爆炸能,储罐内液面较高时能提高油罐结构的抗爆能力. |
关键词: 浮顶储油罐 可燃气体 爆炸冲击 失效准则 动力响应 |
DOI:10.11918/j.issn.0367-6234.2014.10.004 |
分类号:X937; X932 |
基金项目:国家自然科学基金青年科学基金(51108141);黑龙江省青年科学基金(QC2011C064);哈尔滨市科技创新人才研究专项基金(RC2012QN012011). |
|
Dynamic response and failure mechanism of the large floating roof oil tanks under blast loading |
ZHANG Boyi1,2, LI Qiancheng3, WANG Wei1,2, LU Shengzhuo4
|
(1. Key Lab of Structures Dynamic Behavior and Control, Ministry of Education, Harbin Institute of Technology, 150090 Harbin, China;2. College of Civil Engineering, Harbin Institute of Technology, 150090 Harbin, China; 3. School of Astronautics, Harbin Institute of Technology, 150001 Harbin, China; 4. College of Aerospace and Civil Engineering, Harbin Engineering University, 150001 Harbin, China)
|
Abstract: |
To investigate the damage and deformation mechanism of large scale steel floating roof oil tank under the combustible gas explosion, according to the Von Mises yield condition and strength theory, the generalized yield function and failure criterion of tank wall under blast loading is established. A finite element model of 15×104 m3 floating roof tanks has been established by explicit package ANSYS/LS-DYNA, and the dynamic responding processes such as displacements, acceleration, stress and strain of the tank walls structures under blast loading have been simulated. The results show that the failure mode of the floating roof tank is collapse and buckling on top of the impact surface tank walls. The yield range first appears at the stagnation area and then propagates to the neighboring parts, and the irregular plastic hinge circle obviously appears around the deformation area, which results in the concaved bucking of the tank inner surface. During the whole process, the inner liquid not only impacts on the structures, but also absorbs and consumes part of the blast energy. |
Key words: floating roof oil tank combustible gas blast and impact failure criteria dynamic response |