期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:杨京礼,崔征,魏长安,姜守达.一种稀疏度自适应的网络流量矩阵测量方法[J].哈尔滨工业大学学报,2015,47(9):13.DOI:10.11918/j.issn.0367-6234.2015.09.003
YANG Jingli,CUI Zheng,WEI Chang’an,JIANG Shouda.A sparsity adaptive measurement algorithm for network traffic matrix[J].Journal of Harbin Institute of Technology,2015,47(9):13.DOI:10.11918/j.issn.0367-6234.2015.09.003
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 2073次   下载 1004 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一种稀疏度自适应的网络流量矩阵测量方法
杨京礼,崔征,魏长安,姜守达
(哈尔滨工业大学 自动化测试与控制系, 150080 哈尔滨)
摘要:
为提高网络流量矩阵测量的精度,在压缩感知框架下提出一种稀疏度自适应的网络流量矩阵测量方法. 通过对网络流量矩阵的主成分分析及奇异值归一化处理寻找信号支撑集选择的判定阈值,利用网络流量矩阵重构过程中的残差L2范数匹配计算各测量时间点上网络流量矩阵的稀疏度,减小由于网络流量矩阵近似稀疏表示以及稀疏度选择不准确造成的测量误差. 仿真实验结果表明:所提出的方法与现有方法相比能够获得更小的空间相对误差和时间相对误差. 通过稀疏度自适应选择方法,能够有效提高网络流量矩阵的测量精度.
关键词:  网络测量  网络层析成像  流量矩阵  压缩感知  正交匹配追踪
DOI:10.11918/j.issn.0367-6234.2015.09.003
分类号:TP393
基金项目:国家自然科学基金(61501135); 黑龙江省博士后基金(LBH-Z11171).
A sparsity adaptive measurement algorithm for network traffic matrix
YANG Jingli,CUI Zheng,WEI Chang’an,JIANG Shouda
(Department of Automatic Test and Control, Harbin Institute of Technology, 150080 Harbin, China)
Abstract:
In order to improve the accuracy of the measurement algorithm for traffic matrix, a novel traffic matrix measurement algorithm with compressive sensing is proposed. This algorithm gets the judge gate by the principal components analysis and normalization of singular value. To reduce the measurement error created by approximation of sparse express and inaccurate choice of sparsity, we use L2 formulation of residual error to match the sparsity in the process of reconstitution of the traffic matrix on each time of measurement. Simulation results show that, this algorithm can obtain less spatial relative error and temporal relative error compared with the existing algorithm. With the help of adaptive selection for initial value of sparsity, this algorithm can obtain a higher accuracy.
Key words:  network measurement  network tomography  traffic matrix  compressive sensing  orthogonal matching pursuit

友情链接LINKS