期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:杨剑哲,孙巧榆,王君,程丹松,金野,石大明.基于改进增广拉格朗日乘子法的鲁棒性主成分分析[J].哈尔滨工业大学学报,2015,47(11):27.DOI:10.11918/j.issn.0367-6234.2015.11.005
YANG Jianzhe,SUN Qiaoyu,WANG Jun,CHENG Dansong,JIN Ye,SHI Daming.Robust principal component analysis based on advanced augmented lagrange multiplier method[J].Journal of Harbin Institute of Technology,2015,47(11):27.DOI:10.11918/j.issn.0367-6234.2015.11.005
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 2025次   下载 2506 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于改进增广拉格朗日乘子法的鲁棒性主成分分析
杨剑哲1, 孙巧榆2, 王君1, 程丹松1, 金野1, 石大明1
(1. 哈尔滨工业大学 计算机科学与技术学院, 150001 哈尔滨; 2. 淮海工学院 电子工程学院, 222005 江苏 连云港)
摘要:
针对增广的拉格朗日乘子法在求解鲁棒性主成分分析,特别是当数据同时受到稀疏噪声和高斯噪声的干扰时,计算精度会降低,数据降维去噪任务不能很好完成的情况,提出改进的增广拉格朗日乘子法来解决上述问题.一是用基于最优乘子初始化的改进增广拉格朗日乘子法来提高算法的计算精度,二是针对鲁棒性主成分分析,提出一个带高斯噪声的凸优化模型.实验结果表明,本文提出的最优乘子初始化改进算法赋予增广的拉格朗日乘子法一个最优的拉格朗日乘子,从而提高算法的计算精度,而凸优化模型能够清晰地将高斯噪声和稀疏噪声从数据矩阵中分离出去,进而提高数据对高斯噪声的鲁棒性.
关键词:  鲁棒性主成分分析  拉格朗日乘子的最优初始化  增广的拉格朗日乘子法  凸优化  高斯噪声
DOI:10.11918/j.issn.0367-6234.2015.11.005
分类号:TP391
基金项目:国家自然科学基金科学(5,3);国家博士后科学基金(20100480998);哈尔滨市科技创新人才专项资金 (2013RFQXJ110).
Robust principal component analysis based on advanced augmented lagrange multiplier method
YANG Jianzhe1, SUN Qiaoyu2, WANG Jun1, CHENG Dansong1, JIN Ye1, SHI Daming1
(1. School of Computer Science and Technology, Harbin Institute of Technology, 150001 Harbin, China; 2. School of Electronic Engineering, Huaihai Institute of Technology, 222005 Lianyungang, Jiangsu, China)
Abstract:
To solve the problem that the calculation accuracy of the robust principal component analysis is reduced when the high dimensional data is disturbed by the sparse large noise and Gaussian noise at the same time, this paper proposes the advanced augmented Lagrange multiplier method for the robust principal component analysis. On one hand, we enhance the calculation accuracy by the advanced method which is based on the optimal initialization of the Lagrange multiplier. On the other hand we propose a dual noise convex optimization model for the robust principal component analysis. As the experimental results shown, the proposed advanced method provides an optimal multiplier for the augmented Lagrange multiplier method and enhances the calculation accuracy of the method. Besides, the proposed dual noise model can separate the Gaussian noise and sparse noise from the data clearly and reinforces the robustness of the robust principal component analysis facing with dual noise.
Key words:  robust principal component analysis, optimal initialization of Lagrange multiplier, augmented Lagrange multiplier method, novel convex optimization model, Gaussian component

友情链接LINKS