期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:陈增强,李毅,孙明玮,张青,孙青林.四旋翼无人飞行器ADRC-GPC控制[J].哈尔滨工业大学学报,2016,48(9):176.DOI:10.11918/j.issn.0367-6234.2016.09.030
CHEN Zengqiang,LI Yi,SUN Mingwei,ZHANG Qing,SUN Qinglin.ADRC-GPC control of a quad-rotor unmanned aerial vehicle[J].Journal of Harbin Institute of Technology,2016,48(9):176.DOI:10.11918/j.issn.0367-6234.2016.09.030
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1910次   下载 1211 本文二维码信息
码上扫一扫!
分享到: 微信 更多
四旋翼无人飞行器ADRC-GPC控制
陈增强1,2,3,李毅1,2,孙明玮1,2,张青3,孙青林1,2
(1. 南开大学 计算机与控制工程学院,天津 300350;2. 智能机器人技术天津市重点实验室(南开大学),天津 300350; 3. 中国民航大学 理学院,天津 300300)
摘要:
针对四旋翼无人飞行器的姿态控制系统, 需要研究先进控制策略来达到满意的性能. 将自抗扰控制(ADRC)与广义预测控制(GPC)相结合,设计一种新型自抗扰广义预测控制器(ADRC-GPC),利用ADRC中的扩张状态观测器(ESO)来估计和补偿非线性系统的模型不确定性以及外部扰动作用,将原始对象模型转化为积分器形式,然后针对积分器设计广义预测控制器. 阶跃响应系数矩阵能被解析地求解出来,可有效地解决广义预测控制计算量大的问题. 研究结果表明:所提出的ADRC-GPC控制方法能够对四旋翼无人飞行器姿态系统进行实时控制,可满足控制精度及快速性要求,并能有效地克服系统的外部干扰和多变量耦合作用. 自抗扰广义预测控制器能够有效地控制欠驱动非线性多变量系统.
关键词:  姿态控制  自抗扰控制  扩张状态观测器  广义预测控制  四旋翼无人飞行器
DOI:10.11918/j.issn.0367-6234.2016.09.030
分类号:V448.22
文献标识码:A
基金项目:国家自然科学基金(9,7,61273138); 天津市自然科学基金(14JCYBJC18700)
ADRC-GPC control of a quad-rotor unmanned aerial vehicle
CHEN Zengqiang1,2,3, LI Yi1,2, SUN Mingwei1,2, ZHANG Qing3, SUN Qinglin1,2
(1. College of Computer and Control Engineering, Nankai University, Tianjin 300350, China; 2. Key Laboratory of Intelligent Robotics(Nankai University), Tianjin 300350, China; 3. College of Science, Civil Aviation University of China, Tianjin 300300, China)
Abstract:
Aiming to the attitude control system of quad-rotor unmanned aerial vehicles, advanced control scheme should be studied to obtain the satisfied performance. A novel active disturbance rejection generalized predictive control (ADRC-GPC) is presented by combining the technique of active disturbance rejection control (ADRC) and generalized predictive control (GPC). The extended state observer (ESO) of active disturbance rejection control is employed to estimate and compensate the existing uncertainties and disturbance of the nonlinear dynamics systems, such that an integrator form can be obtained to serve as the model for GPC design. By using this scheme, the step response coefficient matrix can be derived analytically and the computational complexity can be substantially reduced. The experiment results show that the designed ADRC-GPC scheme can be applied in the real-time control for the attitude system of the quad-rotor unmanned aerial vehicle (UAV), it can not only meet the need of control accuracy and rapidity, but also have strong disturbance rejection ability and stability. Therefore, the proposed active disturbance rejection generalized predictive control scheme can be used to control under-actuated nonlinear multivariable plants effectively.
Key words:  attitude control  active disturbance rejection control (ADRC)  extended state observer (ESO)  generalized predictive control (GPC)  quad-rotor unmanned aerial vehicle

友情链接LINKS