期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:曹志坡,梁乃兴,曹源文.路面结构综合模量连续检测方法[J].哈尔滨工业大学学报,2020,52(3):90.DOI:10.11918/201812167
CAO Zhipo,LIANG Naixing,CAO Yuanwen.Method for continuously testing pavement structural composite modulus[J].Journal of Harbin Institute of Technology,2020,52(3):90.DOI:10.11918/201812167
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1256次   下载 1069 本文二维码信息
码上扫一扫!
分享到: 微信 更多
路面结构综合模量连续检测方法
曹志坡1,梁乃兴1,曹源文2
(1.重庆交通大学 土木工程学院, 重庆 400074;2.重庆交通大学 机电与汽车学院, 重庆 400074)
摘要:
为了连续检测实际行车荷载作用下的路面结构承载力,以振动设备跳振工况下振动轮对地面的连续冲击荷载来模拟实际行车荷载作用,建立了考虑路面结构随振质量和各运动阶段初始相位角变化的“机器-地面”系统动力学模型,并将多层弹性体系的路面结构等效为用多层结构综合模量代表路面结构承载力的弹性半空间体. 通过对比分析不同统计时间长度内振动轮加速度负向极值的平均值和均方根值,提出以统计时间长度为4 s的振动轮加速度负向极值的平均值作为振动轮加速度信号的评价指标,得到不同型号的振动设备连续冲击不同承载力的路面结构时,振动轮加速度信号与路面结构综合模量之间的回归关系,并通过现场试验证明了方法的可行性. 研究结果表明:在跳振工况下,振动轮的加速度反馈信号与路面结构综合模量存在较好的回归关系;当路面结构综合模量变化时,振动设备的质量越小,振动轮的加速度信号指标变化越明显,检测的效果越好;可使用自重2 t,激振力100 kN的振动设备,对实际行车荷载作用下的路面结构承载力进行连续检测.
关键词:  道路工程  路面结构综合模量  连续冲击荷载  动力学模型  跳振工况  加速度信号
DOI:10.11918/201812167
分类号:U418.4
文献标识码:A
基金项目:云南省交通运输厅科技项目(云交科2017(A)15); 重庆市博士后资助(Xm2016126)
Method for continuously testing pavement structural composite modulus
CAO Zhipo1,LIANG Naixing1,CAO Yuanwen2
(1.School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. School of Mechanotronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
Abstract:
To continuously test the bearing capacity of pavement structure under actual traffic loads, the continuous impact load of a vibration equipment with vibrating drum jumping on a pavement structure was used to simulate actual vehicle loads, and a dynamic model of “machine-ground” system was established considering the vibration mass of pavement structure and the change of initial phase angle in each movement stage. Then, a multi-layer elastic system of the pavement structure was equivalent to an elastic half-space body which uses the composite modulus of multi-layer structure to represent the bearing capacity of the pavement structure. By comparing and analyzing the mean and root-mean-square values of the negative acceleration extreme value of the vibrating drum in different statistical durations, the mean value in the statistical duration of 4 s was proposed as the index for evaluating the acceleration signal of the vibration drum. The regression relation between the acceleration signal of the vibration drum and the composite modulus of the pavement structure was obtained when different types of vibration device continuously impacted the pavement structure with different bearing capacities, and the feasibility of the method was proved by field test. Research results show that there was a good regression relationship between the acceleration signal of vibration drum and the composite modulus of road structure under jumping condition. With the changes of the pavement structural composite modulus, the smaller the mass of the vibration equipment was, the more obvious the change of the acceleration signal index of the vibration drum was, and the better the detection effect was. Therefore, a vibration equipment with the weight of 2 t and excitation force of 100 kN could be used to continuously test the bearing capacity of pavement structure under actual traffic loads.
Key words:  road engineering  pavement structural composite modulus  continuous impact load  dynamic model  jump condition  acceleration signal

友情链接LINKS