引用本文: | 曲有鹏,吕江维,冯玉杰,张杰.硼掺杂金刚石薄膜电极降解青霉素G钠废水机制[J].哈尔滨工业大学学报,2020,52(6):119.DOI:10.11918/202002048 |
| QU Youpeng,Lü Jiangwei,FENG Yujie,ZHANG Jie.Degradation mechanism of penicillin G sodium wastewater at boron-doped diamond electrodes[J].Journal of Harbin Institute of Technology,2020,52(6):119.DOI:10.11918/202002048 |
|
摘要: |
针对抗生素废水中青霉素类物质难于生化降解的问题,采用直流等离子体化学气相沉积方法制备硼掺杂金刚石(boron-doped diamond, BDD)薄膜电极,以典型的青霉素G钠为目标污染物,对BDD电极降解青霉素的规律及降解历程进行研究.结果表明,不同质量浓度的青霉素G钠在电极上均能够被完全降解,发生电化学燃烧.青霉素G钠和化学需氧量(chemical oxygen demand, COD)的降解符合一级反应动力学,电流密度从10 mA/cm2提高到20 mA/cm2时,青霉素G钠和COD的反应速率常数分别增加了51.3%和29.1%.BDD电极上青霉素G钠的降解主要受液相传质过程控制,电流效率(current efficiency, EC)与青霉素G钠的质量浓度和电流密度有关.得到了青霉素G钠在BDD电极上的降解历程,主要的中间产物有青霉酸、异构青霉酸、青霉烯酸和青霉噻唑酸. |
关键词: 硼掺杂金刚石 电催化电极 电化学降解 抗生素废水 青霉素 |
DOI:10.11918/202002048 |
分类号:X703.1 |
文献标识码:A |
基金项目:国家自然科学基金(51308171); 中国博士后科学基金(2016M591534); 黑龙江省政府博士后资助项目(LBH-Z16088) |
|
Degradation mechanism of penicillin G sodium wastewater at boron-doped diamond electrodes |
QU Youpeng1,2,Lü Jiangwei3,FENG Yujie1,ZHANG Jie1
|
(1.State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology), Harbin 150090, China; 2.School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China; 3.School of Pharmacy, Harbin University of Commerce, Harbin 150076, China)
|
Abstract: |
To deal with the bio-refractory substances of penicillin in antibiotic wastewater, boron-doped diamond (BDD) electrodes prepared by direct current plasma chemical vapor deposition system were used to investigate the degradation rule and pathway of penicillin wastewater with penicillin G sodium as target pollutant. Results show that penicillin G sodium with different concentrations could be completely degraded at BDD electrodes by electrochemical combustion reaction. The degradation of penicillin G sodium and chemical oxygen demand (COD) accorded with the pseudo-first-order rate kinetics. When the current density was increased from 10 mA/cm2 to 20 mA/cm2, the apparent reaction rate constant of penicillin G sodium and COD increased by 51.3% and 29.1%, respectively. The degradation of penicillin G sodium at BDD electrodes was controlled by mass transfer in liquid phase. The concentration of penicillin G sodium and current density greatly influenced the current efficient (EC). Major intermediate products of the degradation pathway of penicillin G sodium at BDD electrodes were penillic acid, isopenillic acid, penicillenic acid, and penicilloic acid. |
Key words: boron-doped diamond (BDD) electrocatalytic electrode electrochemical degradation antibiotic wastewater penicillin |