引用本文: | 刘思彤,牛胜利,韩奎华,李英杰,王永征,路春美,王栋,朱英.α-Fe2O3(001)及其掺杂表面吸附As2O3机制的密度泛函理论[J].哈尔滨工业大学学报,2022,54(7):20.DOI:10.11918/202109143 |
| LIU Sitong,NIU Shengli,HAN Kuihua,LI Yingjie,WANG Yongzheng,LU Chunmei,WANG Dong,ZHU Ying.Density functional theory of the adsorption mechanism of As2O3 on α-Fe2O3(001) and its doped surface[J].Journal of Harbin Institute of Technology,2022,54(7):20.DOI:10.11918/202109143 |
|
|
|
本文已被:浏览 853次 下载 811次 |
码上扫一扫! |
|
α-Fe2O3(001)及其掺杂表面吸附As2O3机制的密度泛函理论 |
刘思彤1,牛胜利1,韩奎华1,李英杰1,王永征1,路春美1,王栋2,朱英3
|
(1. 山东大学 能源与动力工程学院, 高效节能及储能技术与装备山东省工程实验室,济南 250061; 2. 佐治亚理工学院布鲁克贝尔可持续发展学院,佐治亚 亚特兰大 30332; 3. 齐鲁工业大学(山东省科学院) 新材料研究所, 济南 250014)
|
|
摘要: |
为提高催化剂抗砷能力,采用密度泛函理论(DFT)方法研究As2O3在α-Fe2O3(001)表面的吸附行为以及掺杂Mo、Mn、Ni对α-Fe2O3(001)表面As2O3吸附行为的影响。建立As2O3在α-Fe2O3(001)表面吸附模型和Mo、Mn、Ni掺杂的吸附模型,计算As2O3在催化剂表面的吸附能,分析成键态密度以及掺杂前后的As2O3在α-Fe2O3(001)表面的电荷布局。结果表明:这4种体系均发生电子转移,Mo掺杂活化了As2O3分子,使得As2O3倾向于吸附在Mo活性位点上,保护了Fe活性位点,增强α-Fe2O3抗砷中毒能力;Mn、Ni掺杂后As2O3反应活性低于掺杂前,抑制了As与掺杂剂的吸附,导致Fe位点更易中毒,不利于之后的NH3-SCR反应。 |
关键词: 选择性催化还原脱硝 氧化铁 掺杂 氧化砷吸附 分子模拟 |
DOI:10.11918/202109143 |
分类号:TQ534 |
文献标识码:A |
基金项目:山东省重大科技创新工程(2019JZZY020305); 齐鲁工业大学(山东省科学院)科教产融合创新试点工程(2020KJC-ZD12) |
|
Density functional theory of the adsorption mechanism of As2O3 on α-Fe2O3(001) and its doped surface |
LIU Sitong1,NIU Shengli1,HAN Kuihua1,LI Yingjie1,WANG Yongzheng1,LU Chunmei1,WANG Dong2,ZHU Ying3
|
(1. Shandong Engineering Laboratory for High-efficiency Energy Conservation and Energy Storage Technology & Equipment, School of Energy and Power Engineering, Shandong University, Jinan 250061, China; 2. Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States;3. Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, China)
|
Abstract: |
In this paper, density functional theory (DFT) method is used to study the adsorption behavior of As2O3 on α-Fe2O3(001) surface and the influence of doping Mo, Mn and Ni on the adsorption behavior of As2O3 on α-Fe2O3(001) surface. The adsorption model of As2O3 on the surface of α-Fe2O3(001) and the adsorption model of Mo, Mn and Ni doping were established. The adsorption energy of As2O3 on the catalyst surface was calculated. The density of bonding states and the charge layout of As2O3 on the surface of α-Fe2O3(001) before and after doping are analyzed. Electron transfer occurs in the four systems. Mo doping activates As2O3 molecules, makes As2O3 tend to be adsorbed on Mo active sites, protects Fe active sites, and enhances the anti-arsenic poisoning ability of α-Fe2O3. After Mn and Ni doping, the reaction activity of As2O3 is lower than before, which inhibits the adsorption of As2O3 and increases the poisoning effect of the catalyst, which is not conducive to the subsequent NH3-SCR reaction. |
Key words: selective catalytic reduction denitrification ferric oxide doping arsenoxide adsorption molecular simulation |
|
|
|
|