引用本文: | 张杰,徐贵达,李冬,刘志诚,陶博.PNDPR-A耦合工艺处理实际污水启动和运行[J].哈尔滨工业大学学报,2022,54(8):1.DOI:10.11918/202103081 |
| ZHANG Jie,XU Guida,LI Dong,LIU Zhicheng,TAO Bo.Start-up and operation of PNDPR-A treatment of actual sewage[J].Journal of Harbin Institute of Technology,2022,54(8):1.DOI:10.11918/202103081 |
|
|
|
本文已被:浏览 828次 下载 759次 |
码上扫一扫! |
|
PNDPR-A耦合工艺处理实际污水启动和运行 |
张杰1,2,徐贵达1,李冬1,刘志诚1,陶博1
|
(1.水质科学与水环境恢复工程北京市重点实验室(北京工业大学),北京 100124; 2.城市水资源与水环境国家重点实验室(哈尔滨工业大学),哈尔滨 150090)
|
|
摘要: |
短程硝化反硝化除磷串联厌氧氨氧化工艺(partial nitrification,denitrifying phosphorus removal and anammox,PNDPR-A)是一种节能高效的新型耦合工艺。为进一步降低污水处理能耗,采用实际生活污水运行PNDPR-A工艺。为适配生活污水,分3阶段(25%、50%和100%)逐步提高生活污水比例。运行初期受生活污水复杂水质影响,短程硝化反硝化除磷单元(partial nitrification, denitrifying phosphorus removal,PNDPR) NH+4-N氧化率下降,NO-2-N积累减少,直接影响后续Anammox单元脱氮效果。针对该问题,提升PNDPR单元好氧1段10%的曝气强度,实现与人工配水时相当的NH+4-N氧化率和NO-2-N积累效果;在阶段Ⅲ,向Anammox单元投加10~20 mg/L的NO-2-N,以缓解阶段Ⅲ初期因PNDPR单元NH+4-N氧化率低导致Anammox单元进水氮素比不理想的限制。经40 d培养驯化,在生活污水中成功启动PNDPR-A耦合工艺,后续系统运行出水平均COD、NH+4-N、NO-2-N和NO-3-N质量浓度分别为36、3.4、5.2和1.1 mg/L,实现了实际生活污水的高效处理。 |
关键词: 短程硝化 厌氧氨氧化 反硝化除磷 生活污水 短程硝化反硝化除磷串联厌氧氨氧化工艺 |
DOI:10.11918/202103081 |
分类号:X703.1 |
文献标识码:A |
基金项目:北京高校卓越青年科学家计划项目(BJJWZYJH01201910005019);国家水体污染控制与治理科技重大专项(2018ZX07601-001) |
|
Start-up and operation of PNDPR-A treatment of actual sewage |
ZHANG Jie1,2,XU Guida1,LI Dong1,LIU Zhicheng1,TAO Bo1
|
(1.Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering (Beijing University of Technology), Beijing 100124, China; 2.State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology), Harbin 150090, China)
|
Abstract: |
The partial nitrification, denitrifying phosphorus removal and anammox (PNDPR-A) was proposed, which is a new type of efficient energy-saving coupling process. To further reduce the energy consumption of sewage treatment, the PNDPR-A process was adopted for the treatment of actual domestic sewage. The proportion of domestic sewage was gradually increased in three stages (25%, 50%, and 100%) to adapt to actual domestic sewage. Affected by the complex water quality of the sewage in the early stage, the NH+4-N oxidation rate of PNDPR unit decreased and the NO-2-N accumulation was reduced, which directly affected the subsequent denitrification effect of Anammox unit. To tackle this problem, the aeration intensity in aerobic 1 period was increased by 10% for PNDPR unit, so as to achieve NH+4-N oxidation rate and NO-2-N accumulation effect comparable to those of simulated sewage. In phase Ⅲ, 10-20 mg/L of NO-2-N were added to Anammox unit, aiming at alleviating the problem of non-ideal influent nitrogen content of Anammox unit due to the low NH+4-N oxidation rate of PNDPR unit in the early stage. After 40 d of cultivation and domestication, the PNPDR-A process was realized for actual domestic sewage treatment. The average effluent COD, NH+4-N, NO-2-N, and NO-3-N concentrations of the subsequent system were 6,3.4,5.2, and 1.1 mg/L, respectively, indicating the high-efficient treatment of actual domestic sewage. |
Key words: short-cut nitrification anaerobic ammonia oxidation (anammox) denitrifying phosphorus removal sewage PNDPR-A |
|
|
|
|