期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:董锐,梁斯宇,左文华,翁祥颖,刘俊.强风环境中下行式移动模架的抗风性能[J].哈尔滨工业大学学报,2022,54(9):122.DOI:10.11918/202107007
DONG Rui,LIANG Siyu,ZUO Wenhua,WENG Xiangying,LIU Jun.Wind resistance of downward movable scaffolding system in strong wind environment[J].Journal of Harbin Institute of Technology,2022,54(9):122.DOI:10.11918/202107007
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 668次   下载 688 本文二维码信息
码上扫一扫!
分享到: 微信 更多
强风环境中下行式移动模架的抗风性能
董锐1,4,梁斯宇1,左文华1,翁祥颖2,刘俊3
(1.福州大学 土木工程学院,福州 350108;2. 福建工程学院 土木工程学院,福州 350118; 3.上海理工大学 环境与建筑学院,上海 200093;4.福建省土木建筑学会,福州350001)
摘要:
为明确强风环境中下行式移动模架的抗风安全性,以东南沿海某50 m跨下行式移动模架为研究对象,采用气弹模型风洞试验和数值计算相结合的方式,对其颤振、涡振和抖振性能进行了较系统的研究。结果表明:结构竖向位移和扭转角分别是移动模架合模和开模工况时的控制性因素;合模工况时,移动模架主体结构能够满足8级强风(20.7 m/s)的作业要求,且能够抵抗14级风(46.1 m/s)作用;开模工况时,在措施得当的情况下主体结构能够满足8级强风的作业要求;多模态耦合频域抖振计算法和《公路桥梁抗风设计规范》中的等效静阵风荷载法均可以用于移动模架的抖振响应计算,且具有一定的精度,推荐采用精度较高的多模态耦合频域抖振计算法。
关键词:  移动模架  风致振动  气弹模型  风洞试验  抗风性能
DOI:10.11918/202107007
分类号:TU311.3
文献标识码:A
基金项目:中国博士后科学基金(2016M590592); 福建省科协服务“三创”优秀学会建设项目(闽科协学〔2019〕8号)
Wind resistance of downward movable scaffolding system in strong wind environment
DONG Rui1,4,LIANG Siyu1,ZUO Wenhua1,WENG Xiangying2,LIU Jun3
(1.College of Civil Engineering, Fuzhou University, Fuzhou 350108, China; 2. School of Civil Engineering, Fujian University of Technology, Fuzhou 350118, China; 3. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; 4. Fujian Civil Engineering & Architechtural Society, Fuzhou 350001, China)
Abstract:
To clarify the safety performance of downward movable scaffolding systems (MSSs) in strong wind environment, this paper takes a downward mobile scaffolding system with span of 50 m (MSS50) in the southeast coastal area as the research object to systematically investigate its flutter, vortex, and buffeting performance by aero-elastic model wind tunnel test and numerical calculation. Results show that vertical displacement and torsion angle were critical factors of MSS in fixing and moving conditions respectively. In the fixing condition, MSS50 could meet the operation requirements of 8-level strong wind (20.7 m/s) and resist 14-level wind (46.1 m/s). In the moving condition, the main structure could meet the operation requirements of 8-level strong wind in the case of proper measures. The multi-modal coupling frequency domain buffeting calculation method and the equivalent static gust wind load method in Wind-resistant Design Specification for Highway Bridges could be used to calculate the buffeting response of MSS with acceptable accuracy. The multi-modal coupling frequency domain buffeting calculation method has higher accuracy than the equivalent static gust wind load method and is recommended to calculate the buffeting response of MSS.
Key words:  movable scaffolding system  wind-induced vibration  aero-elastic model  wind tunnel test  wind resistance performance

友情链接LINKS