期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:丁三波,刘亚拴.不确定离散时间系统的状态逼近事件触发控制[J].哈尔滨工业大学学报,2022,54(12):80.DOI:10.11918/202105030
DING Sanbo,LIU Yashuan.Event-triggered control for uncertain discrete-time systems via state approximation approach[J].Journal of Harbin Institute of Technology,2022,54(12):80.DOI:10.11918/202105030
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 755次   下载 999 本文二维码信息
码上扫一扫!
分享到: 微信 更多
不确定离散时间系统的状态逼近事件触发控制
丁三波,刘亚拴
河北工业大学 人工智能与数据科学学院,天津 300401
摘要:
为减少不确定离散时间线性/非线性系统的事件触发次数, 节省通讯资源, 提出了基于状态逼近的事件触发控制方法。首先, 针对不确定离散线性系统, 利用采样信号、系统矩阵和确定离散线性系统解析解的定义,逐段构造不确定离散系统的状态逼近解。将测量误差定义为系统当前状态与逼近解之间的差, 构造事件触发条件和控制器, 通过设计Lyapunov泛函得到离散线性系统的稳定性条件。其次, 对于一类Lipschitz离散非线性系统, 将该系统进行线性化处理。根据无扰动离散线性系统解析解的定义, 类似于线性系统的处理方法, 逐段构造状态逼近解, 重新定义测量误差, 设计事件触发条件和控制器, 并建立离散非线性系统的稳定性条件。将状态逼近技术与动态事件触发策略相结合, 在减小测量误差的同时, 降低触发阈值, 进一步减少事件发生的次数, 实现更好的控制效果。通过倒立摆系统和蔡氏电路两个数值例子表明,相比于传统事件触发方案, 状态逼近法可以显著降低事件触发的次数, 避免了通讯资源的浪费。
关键词:  事件触发控制  不确定参数  Lipschitz非线性  状态逼近技术  动态触发
DOI:10.11918/202105030
分类号:TP13
文献标识码:A
基金项目:国家自然科学基金(61903121);河北省自然科学基金(F2020202063);河北省创新能力提升计划项目(18961604H)
Event-triggered control for uncertain discrete-time systems via state approximation approach
Sanbo DING, Yashuan LIU
School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
Abstract:
To reduce the event-triggered times of uncertain discrete-time linear/nonlinear systems and save communication resources, we proposed an event-triggered control (ETC) strategy based on state approximation. First, the approximate solution of the uncertain discrete-time linear system was constructed piece-wisely by using the analytical solution of the certain linear system, sampled signals, and system matrices. The measurement error was defined as the difference between the current system state and the approximate solution. The event-triggered condition and controller were constructed, and the stability conditions were established by designing Lyapunov functions. Then, for a class of Lipschitz discrete-time nonlinear system, linearization was performed. According to the analytical solution of undisturbed linear system, similar to the technique for linear system, the piece-wise approximate solution was constructed, and the measurement error was redefined. The event-triggered condition and controller were designed respectively, and the stability conditions of the system were developed. By combining the state approximation technique with dynamic triggered method, the measuring error and the trigger threshold were reduced, and the event-triggered times were further decreased, indicating better control effects. Simulation results of inverted pendulum system and Chua's circuit showed that compared with the traditional event-triggered scheme, the state approximation approach significantly reduced the event-triggered times and avoided wasting communication resources.
Key words:  event-triggered control  uncertain parameters  Lipschitz nonlinear  state approximation technique  dynamic trigger

友情链接LINKS