期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:易文妮,刘津丞,余虔,宣明敏,刘希重,叶新宇,张升.循环荷载作用下非饱和盐化粉土动力特性[J].哈尔滨工业大学学报,2023,55(6):125.DOI:10.11918/202206031
YI Wenni,LIU Jincheng,YU Qian,XUAN Mingmin,LIU Xizhong,YE Xinyu,ZHANG Sheng.Dynamic characteristics of unsaturated salinized silt under cyclic loading[J].Journal of Harbin Institute of Technology,2023,55(6):125.DOI:10.11918/202206031
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1836次   下载 1975 本文二维码信息
码上扫一扫!
分享到: 微信 更多
循环荷载作用下非饱和盐化粉土动力特性
易文妮1,刘津丞2,余虔3,4,宣明敏1,刘希重1,叶新宇1,5,张升1,5
(1.中南大学 土木工程学院,长沙 410075;2.中国建筑第二工程局有限公司,北京 100002; 3.民航机场规划设计研究总院有限公司,北京 101312;4.机场工程安全与长期性能交通运输行业 野外科学观测研究基地,北京 100029;5.高速铁路建造技术国家工程研究中心,长沙 410075)
摘要:
西北地区机场若采用盐化粉土进行道基填筑,在飞机滑行荷载重复作用下,道基累积变形将成为影响机场服役性能的关键。为此,选取北方某地区粉土开展动三轴试验,研究循环荷载下不同含盐量(质量分数)对粉土动力特性的影响,并提出以累积塑性应变4%作为道基破坏标准的盐化粉土动强度预测模型。结果表明:随动应力幅值的增加,盐化粉土塑性变形逐渐由塑性安定状态向增量破坏转变;含盐量对粉土累积轴向应变、动模量、临界动应力有明显影响;相同动应力幅值下,当含盐量由0增加至5%时,试样累积轴向应变以1%含盐量为界限呈先减小后增加的趋势;低动应力幅值下,试样动模量随含盐量增加而逐渐衰减;从微观上对盐化粉土在1%低含盐量时强度短暂增强、高含盐量时强度逐渐衰减的现象进行分析,盐化粉土试样强度与土体孔隙中离子浓度以及土体颗粒排列方式有关;根据盐化粉土动强度预测模型,可得1%含盐量的土体塑性安定临界值约为5%含盐量土体的2.2倍。研究结果可为盐化粉土地区机场道基承荷能力设计提供参考。
关键词:  土动力学  机场道基  动三轴  盐化粉土  累积轴向应变  临界动应力  动模量
DOI:10.11918/202206031
分类号:TU435
文献标识码:A
基金项目:国家自然科学基金(52008401);湖南省自然科学基金(2021JJ40770);中南大学研究生自主探索创新项目(2022ZZTS0793)
Dynamic characteristics of unsaturated salinized silt under cyclic loading
YI Wenni1,LIU Jincheng2,YU Qian3,4,XUAN Mingmin1,LIU Xizhong1,YE Xinyu1,5,ZHANG Sheng1,5
(1.School of Civil Engineering, Central South University, Changsha 410075, China; 2.China Construction Second Engineering Bureau Ltd., Beijing 100002, China; 3.China Airport Planning and Design Institute, Beijing 101312, China; 4.Airport Engineering Safety and Long-Term Performance Field Scientific Observation and Research Base of Transportation Industry, Beijing 100029, China; 5.National Engineering Research Center of High-Speed Railway Construction Technology, Changsha 410075, China)
Abstract:
Under long-term loading from aircraft, the cumulative deformation of airport subgrade filled with saline silt in northwest China can be a key factor that affects the service performance of the airport. Taking the silt in a typical area of northern China as example, the dynamic triaxial test was carried out to investigate the influence of salt content (mass fraction) on the dynamic characteristics of silt under cyclic loading. A cumulative plastic strain of 4% was selected as the failure strain based on the test results, and a prediction model of dynamic strength of salinized silt was proposed. Results show that with the increase in dynamic stress amplitude, the plastic deformation of salinized silt gradually changed from plastic stability to incremental failure. The salt content largely affected the cumulative axial strain, dynamic modulus, and critical dynamic stress of silt. At the same dynamic stress amplitude, as the salt content increased from 0 to 5%, the cumulative axial strain decreased firstly and then increased at the salt content of 1%. At low dynamic stress amplitude, the dynamic modulus decreased with the increase in salt content. The strength of salinized silt experienced a short growth at 1% salt content and a gradual attenuation at high salt content, which might be explained from a microscopic view that the strength of salinized silt sample was closely related to the ion concentration in the soil pores and the arrangement of soil particles. According to the dynamic strength prediction model, the critical dynamic stress for the silt with 1% salt content was about 2.2 times that of silt with 5% salt content. The conclusions of the study can provide reference for the airport runway design and construction in saline silt area.
Key words:  soil dynamics  airport subgrade  dynamic triaxial  salinized silt  cumulative axial strain  critical dynamic stress  dynamic modulus

友情链接LINKS