期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:周雅夫,孙雪松,连静,孙宵宵.基于工况识别的燃料电池公交车能量管理策略[J].哈尔滨工业大学学报,2023,55(8):97.DOI:10.11918/202206048
ZHOU Yafu,SUN Xuesong,LIAN Jing,SUN Xiaoxiao.Energy management strategy of fuel cell bus based on working condition identification[J].Journal of Harbin Institute of Technology,2023,55(8):97.DOI:10.11918/202206048
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 739次   下载 621 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于工况识别的燃料电池公交车能量管理策略
周雅夫1,2,孙雪松1,2,连静1,2,孙宵宵1,2
(1.工业装备结构分析国家重点实验室(大连理工大学),大连 116024; 2.大连理工大学 汽车工程学院,大连 116024)
摘要:
为解决燃料电池混合动力公交车中基于优化的能量管理策略难以实车应用的问题,在分析燃料电池公交车(Fuel cell hybrid bus,FCHB)行驶路线的固定性和片段性的基础上,提出了一种基于SOM-K-means(Self-organized mapping K-means)工况识别的能量管理策略。首先,根据公交车站点将行驶路线划分为多个行驶片段,在车辆停站时,运用SOM-K-means二阶聚类模型完成工况识别,获取车辆下一行驶片段的识别协态变量;当车辆在下一个行驶片段运行时,运用识别协态变量完成基于庞特里亚金极值原理(Pontryagins maximum principle,PMP)求解的能量管理策略的实时应用。其次,建立基于公交车实际运行数据的仿真实验,最后建立硬件在环实验,将所提出的策略移植入整车控制器(Vehicle control unit,VCU)中进行实验。实验结果表明,与基于规则的能量管理策略相比,本研究提出的能量管理策略降低了19.77%的平均等效氢气消耗。且该策略在VCU中每一步的计算时间大约为30 ms,计算结果与仿真结果完全一致,满足车辆对能量管理策略的时效性和准确性的要求。
关键词:  燃料电池混合动力公交车  工况识别  庞特里亚金极值原理  能量管理策略  硬件在环
DOI:10.11918/202206048
分类号:TK911
文献标识码:A
基金项目:国家自然科学基金(52172382)
Energy management strategy of fuel cell bus based on working condition identification
ZHOU Yafu1,2,SUN Xuesong1,2,LIAN Jing1,2,SUN Xiaoxiao1,2
(1.State Key Laboratory of Structural Analysis for Industrial Equipment (Dalian University of Technology), Dalian 116024, China; 2.School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China)
Abstract:
To solve the problem that energy management strategy based on optimization in fuel cell hybrid electric buses is difficult to apply to real life vehicles, an energy management strategy based on SOM-K-means driving condition identification is proposed with reference to the analysis of the fixedness and fragmentation of the fuel cell bus (FCHB) driving route. Firstly, the driving route is divided into driving segments according to bus stops. When the vehicle stops, the SOM-K-means second-order clustering model is used to identify the driving condition, and obtain the predictive co-state of the next driving segment. When the vehicle runs in the next driving segment, a predictive co-state is used to complete the real-time application of the minimum fuel equivalent fuel consumption strategy based on the PMP solution. Secondly, the simulation experiments based on the actual driving data of the bus are established. Finally, the proposed strategy is applied to the vehicle control unit (VCU). The results show that compared with the rule-based strategy, the proposed strategy reduces hydrogen consumption by 19.77%. The calculation time of each step in the VCU is about 30 ms, and the calculation results prove to be completely consistent with the simulation results, meeting the requirements of vehicle for the timeliness and accuracy of energy management strategy.
Key words:  fuel cell hybrid bus  condition identification  Pontryagins maximum principle(PMP)  energy management strategies

友情链接LINKS