引用本文: | 祁祥杰,于方小稚,孟兆明,孙中宁,张楠,丁铭.新型非能动安全壳事故缓解方案设计与分析[J].哈尔滨工业大学学报,2024,56(12):155.DOI:10.11918/202311010 |
| QI Xiangjie,YU Fangxiaozhi,MENG Zhaoming,SUN Zhongning,ZHANG Nan,DING Ming.Design and analysis of a novel passive containment scheme for accident mitigation[J].Journal of Harbin Institute of Technology,2024,56(12):155.DOI:10.11918/202311010 |
|
|
|
本文已被:浏览 44次 下载 49次 |
码上扫一扫! |
|
新型非能动安全壳事故缓解方案设计与分析 |
祁祥杰1,2,于方小稚3,孟兆明1,2,孙中宁1,2,张楠1,2,丁铭1,2
|
(1.黑龙江省核动力装置性能与设备重点实验室(哈尔滨工程大学),哈尔滨 150001;2.哈尔滨工程大学 核科学与技术学院,哈尔滨 150001;3.中国核电工程有限公司,北京 100840)
|
|
摘要: |
中国核电机组“华龙一号”采用了双层钢筋混凝土安全壳和能动与非能动相结合的安全设计理念,核电系统的安全性得到大幅度提升,但其建设成本也明显高于二代机组,影响了其经济竞争力。为进一步提高核电的安全性,并解决好安全性和经济性这一对矛盾,本研究基于华龙一号机组提出一种新型非能动安全壳事故缓解方案,在安全壳外侧设置一个多功能水池,该水池依据射流冷凝原理吸收壳内事故后产生的高温蒸汽从而起到抑压的作用,另外安全注射系统、堆腔注水系统和堆芯换料系统的水源均被集成至该水池中,这使得核电机组的系统和设备得到大量简化。通过严重事故分析程序评估了该方案应对大破口事故(LBLOCA)的性能表现。结果表明:通过合理配置多功能水池气空间容积,可以有效抑制壳内压力的上涨,相比于华龙一号,系统方案在保证安全性能不减弱的同时可以使得安全壳尺寸减小近47%,安全壳系统的总水装量减少约1 700 m3;多功能水池可以存储事故后壳内不凝性气体,对非能动安全壳热量导出系统(PCS)起到换热能力增强作用;堆芯能够得到充分的冷却,燃料包壳外表面峰值温度达到1 389 K,低于包壳的脆化失效温度1 477 K,反应堆堆芯的完整性得到了保证。 |
关键词: 非能动 事故缓解方案 安全壳 大破口失水事故 抑压系统 安全注射系统 |
DOI:10.11918/202311010 |
分类号:TL48 |
文献标识码:A |
基金项目:黑龙江省核动力装置性能与设备重点实验室开放基金(HLJS202208) |
|
Design and analysis of a novel passive containment scheme for accident mitigation |
QI Xiangjie1,2,YU Fangxiaozhi3,MENG Zhaoming1,2,SUN Zhongning1,2,ZHANG Nan1,2,DING Ming1,2
|
(1.Heilongjiang Provincial Key Laboratory of Nuclear Power System and Equipment (Harbin Engineering University), Harbin 150001, China; 2.College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China; 3. China Nuclear Power Engineering Co., Ltd, Beijing 100840, China)
|
Abstract: |
The HPR1000 nuclear power unit in China utilizes a double-layer reinforced concrete containment and incorporates a safety design concept that combines both active and passive safety measures. This design significantly enhances the safety of the nuclear power system. However, the construction cost of HPR1000 is considerably higher compared to second-generation units, thereby impacting its economic competitiveness. In order to further improve the safety of nuclear power and to solve the contradiction between safety and economy, this paper proposes a new type of passive containment accident mitigation scheme based on HPR1000. A multifunctional pool (MP), which employs the condensation of steam jet injection in submerged condition to absorb the steam produced during a containment accident, serving as a means of pressure suppression. Furthermore, the water sources for the safety injection system, reactor cavity injection system, and core exchange system are all consolidated within the pool, resulting in significant simplification of the systems and equipment of the nuclear power unit. The performance of the scheme against large break loss-of-coolant accident (LBLOCA) is evaluated by the critical incident analysis program simulation. The results show that by appropriately compensating the volume of air space within the MP, it is possible to effectively impede the increase in pressure within the shell. Compared with HPR1000, the containment size can be reduced by nearly 47% and the total water capacity of the containment system is reduced by about 1 700 m3 while maintauning safety performance. The MP can store non-condensable gases in the containment after the accident, enhancing the heat transfer performance of the passive containment heat removal system (PCS). The core is adequately cooled, and the fuel cladding’s outer surface reaches a maximal temperature of 1 389 K, which is below the embrittlement failure temperature of 1 477 K, ensuring the integrity of the reactor core’s. |
Key words: passive accident mitigation scheme containment large break loss-of-coolant accident(LBLOCA) suppression system safety injection system |
|
|
|
|