期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:吴雪梅,于广滨,赵永强,胡长胜,李瑰贤.算法改进的自组织神经网络曲面重构[J].哈尔滨工业大学学报,2012,44(5):63.DOI:10.11918/j.issn.0367-6234.2012.05.012
WU Xue-mej,YU Guang-bin,ZHAO Yong-qiang,HU Chang-sheng,LI Gui-xian.Mesh surface reconstruction based on improved kohonen neural network[J].Journal of Harbin Institute of Technology,2012,44(5):63.DOI:10.11918/j.issn.0367-6234.2012.05.012
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 4019次   下载 3558 本文二维码信息
码上扫一扫!
分享到: 微信 更多
算法改进的自组织神经网络曲面重构
吴雪梅1,2, 于广滨3, 赵永强1, 胡长胜1, 李瑰贤1
1.哈尔滨工业大学机电工程学院,150001哈尔滨;2.哈尔滨工业大学材料科学与工程学院博士后流动站,150001哈尔滨;3.哈尔滨理工大学机械动力学院,150080哈尔滨
摘要:
为提高神经网络法三角网格曲面重构的效率,提出自组织神经网络算法与模糊聚类算法相结合的 改进算法.应用改进算法对大规模散乱点云曲面及花瓶实例进行了网络训练及三角网格重建,在初次网络训 练收敛后,加入模糊聚类计算模块,由模糊聚类算法中隶属度计算来确定输入样本是否可用.与自组织神经 网络算法训练特性进行了比较,结果表明:改进后算法避免了以往算法的重复循环,减少了计算量,加快了网 络训练收敛速度和三角网格曲面重构的速度,仿真重构结果表明:改进后的自组织神经网络算法可实现不同 疏密程度的三角网格曲面重建,并可在保持原数据特征的前提下实现数据精简,较通常算法收敛速度快
关键词:  三角网格曲面重建  自组织神经网络  模糊聚类
DOI:10.11918/j.issn.0367-6234.2012.05.012
分类号:TH164
基金项目:围家自然科学基金资助项目(50905049) 黑龙江省科技攻关项目( GC09A524); 黑龙江省博士后基金( LBH - 209189); 黑龙江省国际合作项目( WB06A06)
Mesh surface reconstruction based on improved kohonen neural network
WU Xue-mej1,2, YU Guang-bin3, ZHAO Yong-qiang1, HU Chang-sheng1, LI Gui-xian1
1.School of Mechatronics Engineering, Harbin Institute of Technology,150001 Harbin, China;2.Materials Science and Engineering Postdoctoral Researcher Flow Station, Harbin Institute of Technology,150001 Harbin, China;3.School of Mechanical and Power Engineering, Harbin University of Science and Technology,150080 Harbin, China
Abstract:
To improve the efficiency of triangle mesh surface reconstruction in neural network, an improved Kohonen neural network is put forward, which combines Kohonen neural network and faintness clustering algo- rithm, and by which large scale scattered point clouds triangle mesh surface and vase surface reconstruction have been done. Characteristics comparison is carried out between the improved algorithm and general one, and the results show that the improved algorithm avoids repeat circulation in general algorithm, reduces calcu- lation time, improves the efficiency and rate of the triangle mesh surface reconstruction. Simulation reconstruc- tion result indicates that the improved arithmetic can realize sparse and dense triangle mesh surface reconstruc- tion and data condensation under preconditions with primary data characteristics. The improved arithmetic has fast network convergence speed
Key words:  triangle mesh surface reconstruction, kohonen neural network  faintness clustering method

友情链接LINKS