引用本文: | 李震,张同喜,孟凡森,许秀军.海管S型初始铺设仿真算法[J].哈尔滨工业大学学报,2016,48(7):106.DOI:10.11918/j.issn.0367-6234.2016.07.017 |
| LI Zhen,ZHANG Tongxi,MENG Fansen,XU Xiujun.Simulation algorithm for initial S-lay[J].Journal of Harbin Institute of Technology,2016,48(7):106.DOI:10.11918/j.issn.0367-6234.2016.07.017 |
|
摘要: |
为准确模拟初始铺管作业中管道和起始缆的形态,创建一个逼真的深水铺管起重船铺管作业虚拟训练环境. 针对S型铺管作业中的初始铺管作业,以Euler-Bernoulli梁理论为基础,对初始铺管管道和缆索进行静态分析,建立几何非线性微分方程,且对管道与缆索微分方程边界条件难以确定导致方程无法求解的问题,提出一种基于微分求积法的迭代方法,该方法能够准确地实现边界条件的确立,从而完成微分方程的求解. 仿真和实验分析不同作业状态下管道与缆索的形态与内力变化,结果证明了初始铺管整体算法的准确性. 该方法提高了微分方程求解精度且计算量少,易于程序实现,可用于海上铺管作业方案的工程预演,可行性分析和优化作业方案等.
|
关键词: S型铺管 Euler-Bernoulli梁 非线性 微分求积法 迭代 |
DOI:10.11918/j.issn.0367-6234.2016.07.017 |
分类号:TH133; TP183 |
文献标识码:A |
基金项目:国家科技重大专项 (Z12SJENA0014) |
|
Simulation algorithm for initial S-lay |
LI Zhen, ZHANG Tongxi, MENG Fansen, XU Xiujun
|
(College of Mechanic and Electrical Engineering, Harbin Engineering University, Harbin 150001, China)
|
Abstract: |
To simulate the shape of the pipe and cable in the initial pipe laying operation accurately, a realistic virtual training environment of pipe-laying operation was created. For the initial S-laying and based on the Euler-Bernoulli beam theory, the geometric nonlinear differential equations is established by analyzing the static force of initial pipe laying and cable. To solve the problem of the differential equations boundary conditions, an iterative method based on differential quadrature method is proposed. By simulation and experiments, the shape and variation of the internal force of the pipe and cable under different operating conditions are analyzed, and the accuracy of the algorithm for initial S-laying is proved. The practical example shows that the algorithm can be applied to the initial S-laying effectively. The accuracy of the differential equation is improved and it is easy to be programmed by using this method, which contributes to the preview of offshore pipe laying operation , feasibility analysis and optimization of operation plan.
|
Key words: S-lay Euler-Bernoulli beam nonlinear differential quadrature method iterative |