期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:孙铁志,魏英杰,王聪.液氢和液氮绕水翼空化流动特性分析[J].哈尔滨工业大学学报,2016,48(8):141.DOI:10.11918/j.issn.0367-6234.2016.08.024
SUN Tiezhi,WEI Yingjie,WANG Cong.Study on the behavior of cavitating flows around the hydrofoil in liquid hydrogen and nitrogen[J].Journal of Harbin Institute of Technology,2016,48(8):141.DOI:10.11918/j.issn.0367-6234.2016.08.024
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1944次   下载 856 本文二维码信息
码上扫一扫!
分享到: 微信 更多
液氢和液氮绕水翼空化流动特性分析
孙铁志,魏英杰,王聪
(哈尔滨工业大学 航天学院,哈尔滨150001)
摘要:
为分析液氢和液氮两种低温流体介质的空化特性,通过对CFX软件二次开发,将Schnerr-Sauer空化模型和液氮、液氢随温度变化的物性参数嵌入到CFX求解代码中,同时耦合求解考虑汽化潜热影响的能量方程,从而在考虑热力学效应条件下,开展了液氢和液氮绕水翼空化流动的三维数值模拟研究,并将计算结果与试验数据进行对比,验证了数值方法的有效性.计算结果表明, 热力学效应对液氢空化区域压力和温度参数变化影响更显著,在液氮空化核心区域内液相体积分数比液氢中的更小,在空泡尾部闭合区域从汽相向液相转化迅速.汽-液两相间质量传输特性可作为评估空化区域内温度、压力以及相体积分数分布的有效依据.
关键词:  液氢  液氮  空化流动  热力学效应  数值计算
DOI:10.11918/j.issn.0367-6234.2016.08.024
分类号:TJ763
文献标识码:A
基金项目:中央高校基本科研业务费专项资金资助(HIT.NSRIF.201159;黑龙江省自然科学基金(A201409);哈尔滨市科技创新人才研究专项资金资助(2013RFLXJ007)
Study on the behavior of cavitating flows around the hydrofoil in liquid hydrogen and nitrogen
SUN Tiezhi, WEI Yingjie, WANG Cong
(School of Astronautics, Harbin Institute of Technology,Harbin 150001, China)
Abstract:
The objective of this study is to analyze the cavitation characteristics in liquid hydrogen and nitrogen. The aim was realized by implanting the Schnerr-Sauer cavitation model and the physical properties of liquid hydrogen and liquid nitrogen at different temperatures into the CFX solver code, and coupling the energy equation considering the latent heat. Then the three-dimensional numerical simulation of cavitating flows was conducted around a hydrofoil in liquid hydrogen and nitrogen, and the experimental results of the pressure and temperature were utilized to validate the numerical strategy. The results show that the thermodynamic effects have more pronounced impact on the pressure and temperature in the cavitation region of liquid hydrogen. The liquid phase volume fraction in liquid nitrogen is smaller in the core cavitation region than that of liquid hydrogen, and the rate of phase transition from vapor to liquid is large in the closure region. The mass transfer rate between liquid and vapor can be used to evaluate the temperature, pressure and phase volume fraction inside the cavity effectively.
Key words:  liquid hydrogen  liquid nitrogen  cavitating flows  thermodynamic effects  numerical simulation

友情链接LINKS