引用本文: | 刘嘉,左薇,张军,李慧,李俐频,田禹.MBR+蠕虫反应器膜污染特征及微生物群落结构[J].哈尔滨工业大学学报,2017,49(2):32.DOI:10.11918/j.issn.0367-6234.2017.02.006 |
| LIU Jia,ZUO Wei,ZHANG Jun,LI Hui,LI Lipin,TIAN Yu.Analysis of membrane fouling and microbial community structure in an MBR+worm reactor[J].Journal of Harbin Institute of Technology,2017,49(2):32.DOI:10.11918/j.issn.0367-6234.2017.02.006 |
|
本文已被:浏览 2897次 下载 1500次 |
码上扫一扫! |
|
MBR+蠕虫反应器膜污染特征及微生物群落结构 |
刘嘉1,2, 左薇2, 张军2, 李慧2, 李俐频2, 田禹1,2
|
(1.城市水资源与水环境国家重点实验室(哈尔滨工业大学), 哈尔滨150090; 2.哈尔滨工业大学 市政环境工程学院,哈尔滨150090)
|
|
摘要: |
为研究针对MBR+蠕虫反应器工艺中蠕虫捕食对膜污染的影响, 在常温下分别平行运行MBR+蠕虫反应器(R1)和作为对照系统的MBR+空白蠕虫反应器(R2).监测R1工艺中MBR (S-MBR)和R2工艺中MBR (C-MBR)的跨膜压力(pTM), 检测污泥混合液及泥饼层微生物代谢产物的变化.利用变性梯度凝胶电泳(DGGE)技术分析S-MBR和C-MBR中微生物种类和分布.结果表明: S-MBR的膜污染周期为90 d, C-MBR的膜污染周期为28~37 d, 蠕虫捕食导致S-MBR中SMP和EPS的多糖和蛋白质减少. S-MBR膜丝表面是微生物菌群Alphaproteobacterium, Betaproteobacterium, Deltaproteobacterium和Geobacter, 而C-MBR膜丝表面是微生物菌群Azorhizobium, Rhodobacter, Gammaproteobacterium和Flavobacteria, 对MBR膜污染进程起主要作用. Caldilinea可能与S-MBR膜污染减轻有关.蠕虫捕食可改变微生物群落结构, 减缓S-MBR膜污染.
|
关键词: 膜生物反应器 膜污染 胞外聚合物 溶解性微生物代谢产物 微生物群落结构 |
DOI:10.11918/j.issn.0367-6234.2017.02.006 |
分类号:X172 |
文献标识码:A |
基金项目:水体污染控制与治理科技重大专项(2013ZX07201007);黑龙江省杰出青年科学基金(JC201303);哈尔滨工业大学城市水资源与水环境国家重点实验室项目(2014DX03);哈尔滨工业大学城市水资源与水环境国家重点实验室开放基金(QA201207) |
|
Analysis of membrane fouling and microbial community structure in an MBR+worm reactor |
LIU Jia1,2,ZUO Wei2,ZHANG Jun2, LI Hui2, LI Lipin2, TIAN Yu1,2
|
(1.State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology), Harbin 150090, China; 2.School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China)
|
Abstract: |
To study the effects of worm predation on membrane fouling in an MBR+worm reactor, an MBR+worm reactor with worm (R1) and an MBR+worm reactor without worm (R2) were operated in parallel. Variation of transmembrane pressure (pTM) and microbial metabolites were studied in the MBR (S-MBR) of the R1 and the MBR (C-MBR) of the R2. Denatured gradient gel electrophoresis (DGGE) was used for analyzing the composition and distribution of microbial community in the S-MBR and the C-MBR. The results showed that the membrane fouling cycles of the S-MBR and the C-MBR were 90 d and 28-37 d, respectively. Worm predation decreased the polysaccharide and proteins in the soluble microbial products (SMP) and extracellular polymeric substances (EPS) of the S-MBR. Alphaproteobacterium, Betaproteobacterium, Deltaproteobacterium, Geobacter on the membrane wire surface of the S-MBR and Azorhizobium, Rhodobacter, Gammaproteobacterium, Flavobacteria on the membrane wire surface of the C-MBR played an important role in the membrane fouling. Caldilinea was suggested to be related to the membrane fouling alleviation of the S-MBR. Worm predation changed the microbial community structure of the S-MBR, resulting in membrane fouling alleviation.
|
Key words: MBR membrane fouling EPS SMP microbial community structure |