引用本文: | 姜佩贺,赵占锋,陈焕文,周志权.低真空度下四极杆质量分析器稳定区的数值计算[J].哈尔滨工业大学学报,2017,49(5):31.DOI:10.11918/j.issn.0367-6234.201604135 |
| JIANG Peihe,ZHAO Zhanfeng,CHEN Huanwen,ZHOU Zhiquan.Numerical method for stability region in quadrupole at low vacuum[J].Journal of Harbin Institute of Technology,2017,49(5):31.DOI:10.11918/j.issn.0367-6234.201604135 |
|
本文已被:浏览 2031次 下载 1135次 |
码上扫一扫! |
|
低真空度下四极杆质量分析器稳定区的数值计算 |
姜佩贺1,赵占锋2,陈焕文3,周志权1,2
|
(1. 哈尔滨工业大学 电子与信息工程学院,哈尔滨 150001;2.哈尔滨工业大学(威海) 信息与电气工程学院, 山东 威海 264209;3.东华理工大学 江西省质谱科学与仪器重点实验室,南昌 330013)
|
|
摘要: |
为实现质谱仪在低真空度下进行质量分析,推导了有阻力条件下的离子运动方程,得到低真空度下有阻尼项的Mathieu方程,利用五阶龙格-库塔数值方法在MATLAB中求解离子在四极杆中的运动特性和不同阻尼条件下的稳定区.提出了利用数值方法确定低真空度下四极杆中离子运动稳定区的方法,给出了第一、第二以及高阶稳定区随阻尼系数k的变化趋势.结果表明:随着真空度的降低,稳定区变大并连接在一起;通过调整离子操作模式,可以完成质量分析;提高扫描频率可以抵消真空度降低所带来的影响.
|
关键词: 低真空质量分析 四极杆 稳定区 Mathieu方程 龙格-库塔 |
DOI:10.11918/j.issn.0367-6234.201604135 |
分类号:TH843 |
文献标识码:A |
基金项目:国家自然科学基金青年科学基金(21505028); 山东省自然科学基金(ZR2015BQ004) |
|
Numerical method for stability region in quadrupole at low vacuum |
JIANG Peihe1,ZHAO Zhanfeng2,CHEN Huanwen3,ZHOU Zhiquan1,2
|
(1.School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China; 2.School of Information and Electrical Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, Shandong, China; 3.Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China)
|
Abstract: |
In order to achieve the mass spectrum at low vacuum, the equation of ion motion with resistance is derived. Pressure effects are treated by adding a drag term to the Mathieu function which is calculated based on fifth-order Runge-Kutta in MATLAB. The effects of gas pressure on stability regions and ion motion are described. A numerical method for getting stability regions is proposed. The first, the second and the higher stability regions in the presence of the damping force are given. The results show that the damping force caused by gas pressure enlarges the stability regions. The initially separate stability zones merge together for higher pressure. In low vacuum conditions, mass analysis can be performed by altering operation mode. The pressure effects can be reduced by increasing the frequency.
|
Key words: mass analysis at low vacuum quadrupole stability region Mathieu function Runge-Kutta |