期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:田洪亮,钱志鸿,梁潇,王义君,王雪.离散度WKNN位置指纹Wi-Fi定位算法[J].哈尔滨工业大学学报,2017,49(5):94.DOI:10.11918/j.issn.0367-6234.201610104
TIAN Hongliang,QIAN Zhihong,LIANG Xiao,WANG Yijun,WANG Xue.Discrete degree WKNN location fingerprinting algorithm based on Wi-Fi[J].Journal of Harbin Institute of Technology,2017,49(5):94.DOI:10.11918/j.issn.0367-6234.201610104
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 2184次   下载 1330 本文二维码信息
码上扫一扫!
分享到: 微信 更多
离散度WKNN位置指纹Wi-Fi定位算法
田洪亮1,2,钱志鸿1,梁潇1,王义君3,王雪1
(1. 吉林大学 通信工程学院,长春130012;2. 东北电力大学 信息工程学院,吉林 吉林132012; 3.长春理工大学 电子信息工程学院,长春 130022)
摘要:
为改善加权K近邻位置指纹定位算法在室内环境复杂时的定位性能,提出一种以位置指纹离散度作为权值参考的改进加权K近邻位置指纹定位算法.算法在离线位置指纹数据库建立阶段采用K-means聚类算法对位置指纹进行聚类,来降低搜索位置指纹库的计算量.从离线位置指纹库中选取K个与在线实测Wi-Fi信号强度信息最相似的位置指纹,比较其离散程度,将离散程度小的位置指纹赋予较高的加权系数,以减小原加权K近邻算法在室内复杂环境信号强度随距离变化较大情况下带来的位置估算误差.对离散度加权K近邻算法时间复杂度的分析表明,其计算量小于原加权K近邻算法;实际环境实验结果表明,离散度加权K近邻算法具有更高的定位精度,且定位误差波动较小.
关键词:  无线定位  位置指纹  Wi-Fi  接收信号强度指示  离散度
DOI:10.11918/j.issn.0367-6234.201610104
分类号:TP393
文献标识码:A
基金项目:国家自然科学基金(2,5, 61540022); 吉林大学研究生创新基金(2016091)
Discrete degree WKNN location fingerprinting algorithm based on Wi-Fi
TIAN Hongliang1,2,QIAN Zhihong1,LIANG Xiao1,WANG Yijun3,WANG Xue1
(1. School of Communication Engineering, Jilin University, Changchun 130012, China; 2. School of Information Engineering, Northeast Dianli University, Jilin 132012, Jilin, China; 3. School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China)
Abstract:
To improve the localization performance of the WKNN location fingerprinting algorithm when the indoor environment is complex, an improved WKNN location fingerprinting algorithm—Discrete Degree Weighted K-Nearest Neighbor (DD-WKNN) is proposed, which takes the dispersion of location fingerprints as the weight reference. The K-means clustering algorithm is used to cluster the location fingerprints when the offline location fingerprint database is established, which reduces the computational complexity of searching the location fingerprint database. K location fingerprints which are most similar to online measured RSSIs are selected from the offline location fingerprint database, and the discrepancy degrees are compared. A higher weighting coefficient is assigned to the position fingerprint with a small degree of dispersion, which reduces the error of position estimation caused by the original WKNN algorithm when the signal strength of the indoor environment changes greatly with distance. The analysis of the time complexity of DD-WKNN algorithm shows that its computational complexity is less than that of the original WKNN algorithm. The experimental results show that the DD-WKNN algorithm has a higher positioning accuracy and the positioning error fluctuates less.
Key words:  wireless localization  location fingerprint  Wi-Fi  received signal strength indicator (RSSI)  discrete degree

友情链接LINKS