引用本文: | 丁莹,丁烨,曹婷婷,牛博申,杨立军.飞秒激光加工K24高温合金的仿真与试验分析[J].哈尔滨工业大学学报,2017,49(7):131.DOI:10.11918/j.issn.0367-6234.201705023 |
| DING Ying,DING Ye,CAO Tingting,NIU Boshen,YANG Lijun.Numerical simulation and experimental analysis on femtosecond ablation of K24 superalloy[J].Journal of Harbin Institute of Technology,2017,49(7):131.DOI:10.11918/j.issn.0367-6234.201705023 |
|
本文已被:浏览 1960次 下载 1613次 |
码上扫一扫! |
|
飞秒激光加工K24高温合金的仿真与试验分析 |
丁莹1,丁烨2,曹婷婷2,牛博申3,杨立军2
|
(1.长春理工大学 空间光电技术研究所,长春 130022;2.哈尔滨工业大学 机电工程学院,哈尔滨 150001; 3.浙江大学 机械工程学院,杭州 310027)
|
|
摘要: |
为探究飞秒激光与K24镍基高温合金的作用机理,应用普朗克方程与菲涅尔公式,推导出K24反射率与吸收率随激光脉宽的变化曲线.利用固体力学的线性假设方程,推导出K24高温合金的晶格热容和电子比热.结合简化的一维双温模型,采用有限差分法解析单脉冲飞秒激光与K24高温合金作用过程中电子和晶格的温度变化,基于K24高温合金的蒸发温度推导得出单脉冲飞秒激光作用下合金的理论蚀除深度.用较低频率的激光进行了验证试验.用正交实验分析激光平均功率、焦点进给距离、扫描次数、扫描速度等工艺参数对加工微孔形貌的影响规律.结果表明:扫描速度对加工微孔形貌的影响最大,进给距离次之,而激光能量和扫描次数对微孔形貌的影响较小.研究结果为飞秒激光对高温合金的高质量微孔加工提供了理论和实验基础.
|
关键词: 飞秒激光 K24高温合金 有限差分法 线性假设理论 正交试验 |
DOI:10.11918/j.issn.0367-6234.201705023 |
分类号:TN29 |
文献标识码:A |
基金项目:国家高技术研究发展计划(2015AA042702);黑龙江省应用技术研究与开发计划(GX16A003) |
|
Numerical simulation and experimental analysis on femtosecond ablation of K24 superalloy |
DING Ying1,DING Ye2,CAO Tingting2,NIU Boshen3,YANG Lijun2
|
(1.Institute of Space Optoelectronic Technology, Changchun University of Science and Technology, Changchun 130022, China; 2. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China; 3. College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China)
|
Abstract: |
To explore the interaction mechanism between femtosecond laser and K24 Nickel-based superalloy, Planck equation and Fresnel's formula are employed to derivate variation curve of pulse width dependent reflectivity and absorption coefficient of K24 superalloy. Linear hypothesis taken from solid mechanics is utilized to derivate lattice heat capacity and electronic specific heat coefficient of K24 superalloy. Temperature variation of electron and lattice during single pulse femtosecond laser ablation process is theoretically described by a simplified one dimensional two temperature model and finite difference method. Theoretical single pulse femtosecond laser ablation depth is calculated referring to vaporization temperature of K24 superalloy. Corresponding experiments are carried out to verify the accuracy of simulation results using low pulse frequency. Orthogonal experiments are carried out to investigate the influence rules of several technological parameters on the morphology features of micro holes. Results show that the scanning velocity is of the most significant effect, followed by feed distance, while scanning time and average power have relatively small effects on morphology of micro holes. This work provides theoretical and experimental foundation for the application of femtosecond laser drilling of superalloy.
|
Key words: femtosecond laser K24 superalloy finite difference model linear hypothesis orthogonal experiments |