期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:韩鹏,李明涛,高东.一种TAEM段结合迭代校正的轨迹快速生成算法[J].哈尔滨工业大学学报,2017,49(10):66.DOI:10.11918/j.issn.0367-6234.201610067
HAN Peng,LI Mingtao,GAO Dong.A rapid TAEM trajectory planner based on iterative correction algorithm[J].Journal of Harbin Institute of Technology,2017,49(10):66.DOI:10.11918/j.issn.0367-6234.201610067
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1542次   下载 852 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一种TAEM段结合迭代校正的轨迹快速生成算法
韩鹏,李明涛,高东
(中国科学院 国家空间科学中心,北京100190)
摘要:
重复使用运载器(RLV)到达末端能量管理段(TAEM)接口处时,其位置、航迹倾角等初始状态存在大范围摄动的情况,为了使其在此情况下顺利进入自动着陆窗口,提出了一种结合迭代校正法的轨迹快速生成算法.首先根据高度与速度约束生成参考动压-高度剖面,通过跟踪此剖面实现纵向制导;通过跟踪由3个参数定义的轨迹地面投影实现侧向制导,纵向制导和侧向制导可以保证RLV的速度、航迹倾角、航迹偏角、侧向位置满足末端约束.提出的迭代校正算法可以快速确定航向校准柱的位置与最终半径这两个参数用以调整航程,从而保证末端所有状态均满足自动着陆段接口处的边界约束.仿真结果表明:该算法可以根据RLV具体的初始状态,自动选择直接或者间接进场策略,并快速生成可行的参考轨迹,轨迹生成时间4~12 s.该算法使用的数值方法非常成熟与稳定,易于工程实现; 与航天飞机的策略相比,该算法不依赖离线计算并存储的若干参考轨迹,可根据当时的状态自主生成新的参考轨迹.仿真结果验证了算法的快速性、鲁棒性与实用性.
关键词:  重复使用运载器  末端能量管理  迭代校正  轨迹生成  航向校准柱
DOI:10.11918/j.issn.0367-6234.201610067
分类号:V412.4
文献标识码:A
基金项目:国家高技术研究发展计划863-703课题(2013AA7033045)
A rapid TAEM trajectory planner based on iterative correction algorithm
HAN Peng,LI Mingtao,GAO Dong
(National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China)
Abstract:
When the RLV reaches the TAEM interface, the large-scale perturbation exists in initial position and azimuth angle states. A rapid trajectory planning method based on iterative correction algorithm has been proposed, to ensure that the RLV can get into the approach and landing interface successfully. According to the RLV's specific initial states, the method can select the direct or overhead heading alignment cone (HAC) mode automatically, and can generate a feasible reference profile quickly. First, the reference dynamic pressure-height profile can be generated based on the height and velocity constraints. Tracking the dynamic pressure-height profile is employed as the longitudinal guidance law, whereas tracking the ground track is used as the lateral guidance law. The longitudinal and lateral guidance laws ensure that the speed, flight path angle, azimuth angle, and lateral position of the RLV meet the terminal constraints. The ground track is composed by piecing together several flight segments that are defined by three geometric parameters. Two of the parameters, the position of HAC and its final radius, are determined by the iterative correction algorithm rapidly, until all of the required conditions for approach and landing interface are met. Simulation shows that the algorithm can select the direct or overhead heading alignment cone (HAC) mode automatically, and can generate a feasible reference profile quickly according to the RLV's specific initial states. The profile generation time are 4 to 12 seconds. The numerical methods used by the proposed algorithm are very mature and stable, and very easy to be realized in engineering. Compared with the strategy of the space shuttle, the algorithm does not rely on a number of reference trajectories that are calculated and stored offline, and the algorithm can a new reference trajectory autonomously according to the specific states. Simulation results have demonstrated the rapidity, robustness and practicability of the trajectory planning algorithm.
Key words:  reusable launch vehicle  terminal area energy management  iterative correction  trajectory generation  heading alignment cone

友情链接LINKS