期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:张振兴,杨任农,房育寰,赵克新.自适应Tent混沌搜索的蚁狮优化算法[J].哈尔滨工业大学学报,2018,50(5):152.DOI:10.11918/j.issn.0367-6234.201706044
ZHANG Zhenxing,YANG Rennong,FANG Yuhuan,ZHAO Kexin.Ant lion optimizatopm algorithm based on self-adaptive Tent chaos search[J].Journal of Harbin Institute of Technology,2018,50(5):152.DOI:10.11918/j.issn.0367-6234.201706044
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1843次   下载 1382 本文二维码信息
码上扫一扫!
分享到: 微信 更多
自适应Tent混沌搜索的蚁狮优化算法
张振兴,杨任农,房育寰,赵克新
(空军工程大学 航空航天工程学院, 西安 710038)
摘要:
针对蚁狮算法存在的早熟收敛和不易得到全局最优解等问题,借鉴混沌优化算法,提出了自适应Tent混沌搜索蚁狮算法.该算法首先使用Tent混沌映射初始化种群,然后自适应调整混沌搜索空间得到最优解,改善适应度较差个体,提高种群整体的适应度和寻优效率,同时使用锦标赛策略选择蚁狮个体.最后,利用混沌算子优化蚂蚁随机游走行为,与蚁狮觅食行为形成了全局、局部并行搜索模式.分别使用复杂高维基准函数和航迹规划问题测试算法性能.其中,6个复杂高维基准函数的寻优测试实验表明,对于30维基准函数,该算法经过约0.5秒收敛到最优值;对于50维基准函数,约2秒收敛到最优值.与标准蚁狮算法和其他优化算法相比,该算法具有较好的收敛速度和寻优精度,适合复杂高维函数寻优.航迹规划实验表明,对于包含7个威胁源的空域环境,当搜索维度为10维时,该算法经过0.939秒,迭代30次基本可以达到航迹代价的全局最优值.与标准蚁狮算法相比,能够更加快速准确地得到一条满足要求的航迹,具有实际应用价值.
关键词:  蚁狮优化算法  混沌理论  锦标赛选择策略  Tent映射  Logistic映射  航迹规划
DOI:10.11918/j.issn.0367-6234.201706044
分类号:V247
文献标识码:A
基金项目:航空科学基金资助项目(20155196022);国家自然科学基金青年基金资助项目(71501184);陕西省自然科学基金(2016JQ6050)
Ant lion optimizatopm algorithm based on self-adaptive Tent chaos search
ZHANG Zhenxing,YANG Rennong,FANG Yuhuan,ZHAO Kexin
(College of Aeronautics and Aeronautics Engineering, Air Force Engineering University, Xi’an 710038, China)
Abstract:
To overcome premature convergence and local minimum of Ant Lion Optimizer (ALO) algorithm, an innovative ALO algorithm based on self-adaptive chaos search which is combined with Tent chaos algorithm is proposed. Tent mapping is applied to initialize individuals in the search space. Self-adaptive adjustment of chaos search scopes is presented to get the better solution, perfect the fitness of the worse individuals and enhance the whole individuals' fitness and efficiency. At the same time, Tournament selection strategy is used to screen out ant lion individuals. At the end, ants' random walking behavior is optimized by chaos operator to form a parallel search mode with ant lion foraging behavior, which is beneficial to the overall optimization performance to obtain the optima. Algorithm's performance is tested through complex benchmark functions with high-dimension and path planning problem. Experimental results of the former further confirm that, as for benchmark functions with 30 dimensions, it costs about 0.5 s to converge to the optimum, and for 50 dimensions, it is about 2 s. Compared with ALO and other optimization algorithms, the improved algorithm not only accelerates the convergence rate and improves the precision, but it is also fit for complex high-dimensional functions optimization. Path planning test manifests that for airspace with 7 menaces, while the search dimension is 10, after 0.939 s, and 30 iterations, the global optimum of the path cost function can be got. Compared with ALO, it has advantage in speed and accuracy to get the specific path, and it is of great value in actual problems.
Key words:  ant lion optimization algorithm  chaos theory  tournament selection strategy  Tent mapping  Logistic mapping  path planning

友情链接LINKS