期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:赵鹏越,郭永博,白清顺,张飞虎.压痕位置对多晶铜纳米压痕变形机理的影响[J].哈尔滨工业大学学报,2018,50(7):11.DOI:10.11918/j.issn.0367-6234.201711061
ZHAO Pengyue,GUO Yongbo,BAI Qingshun,ZHANG Feihu.Influence of indentation position on the nanoindentation deformation mechanism of polycrystalline copper[J].Journal of Harbin Institute of Technology,2018,50(7):11.DOI:10.11918/j.issn.0367-6234.201711061
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 2474次   下载 1242 本文二维码信息
码上扫一扫!
分享到: 微信 更多
压痕位置对多晶铜纳米压痕变形机理的影响
赵鹏越,郭永博,白清顺,张飞虎
(哈尔滨工业大学 精密工程研究所, 哈尔滨 150001)
摘要:
为研究在纳米压痕过程中微观结构多晶铜力学特性及变形机理的影响机制,采用Poisson-Voronoi和Monte Carlo方法建立大尺度多晶铜分子动力学模型,针对多晶铜不同微观结构分别建立初始压痕位置位于晶粒、晶界面、三叉晶界、顶点团4类微观结构的纳米压痕模型,采用分子动力学方法模拟计算金刚石探针压入模型的纳米压痕过程,计算4种模型的纳米压痕力及原子的静应力与第三应力.采用中心对称参数法分析多晶铜表面及亚表面位错演化对纳米压痕过程的影响.结果表明:探针对4种微观结构的纳米压痕过程存在显著的规律性,纳米压痕力的增长速率、纳米压痕过程位错向邻近晶粒扩散的难度、纳米压痕后多晶铜亚表面位错分布范围、纳米压痕过程中低维数微观结构累积原子势能的难度等均满足降序关系:晶粒、晶界面、三叉晶界、顶点团;压痕位于高维数微观结构时,其相邻的微观结构呈拉应力;而压痕位于低维数微观结构时,其相邻的微观结构呈压应力.在多晶铜的纳米压痕过程中,为减少缺陷结构数量及其能量累积,降低材料的残余应力,应针对多晶铜的晶粒进行机械加工并避开顶点团、三叉晶界等微观结构.
关键词:  微纳加工  多晶铜  微观拓扑结构  纳米压痕  压痕位置  变形机理  分子动力学
DOI:10.11918/j.issn.0367-6234.201711061
分类号:TB31
文献标识码:A
基金项目:国家青年科学基金(51405111); 国家自然科学基金重点项目(51535003); 国家自然科学基金面上项目(51775146)
Influence of indentation position on the nanoindentation deformation mechanism of polycrystalline copper
ZHAO Pengyue,GUO Yongbo,BAI Qingshun,ZHANG Feihu
(Center for Precision Engineering ,Harbin Institute of Technology, Harbin 150001, China)
Abstract:
To study the effect of microstructural components on the mechanical properties and deformation mechanism of polycrystalline copper during the nanoindentation process, a large-scale molecular dynamics simulation model of polycrystalline copper is structured by Poisson-Voronoi method and Monte Carlo method. Based on the microstructural components of the nanocrystalline copper, the polycrystalline copper nanoindentation simulation models with initial nanoindentation position at different microstructural components that contain grain cell, grain boundary, triple junction and vertex points are established, respectively. The nanoindentation process with the four different initial nanoindentation positions are simulated by molecular dynamics method, and the nanoindentation force and internal stress of the microstructural components are calculated. Centrally symmetric parameter method is used to analyze the dislocation nucleation and propagation process in the surface and subsurface of the polycrystalline copper with different initial nanoindentation positions. The results show that there is obvious regularity of the microstructural components during the nanoindentation process: the nanoindentation force rate, the difficulty of dislocation propagate to adjacent grains, the size expansion of dislocation distribution range on the polycrystalline surfaces, as well as the ability of the microstructural component low dimension accumulating atomic potential energy satisfy the descending relationship: grain cell, grain boundary, triple junction and vertex points. In addition, when the indentation position is at the high-dimensional microstructural component, the adjacent microstructural component exhibits tensile stress, while the indentation position is at the low-dimensional microstructural component, the adjacent microstructural component exhibits compressive stress. Therefore, during the nanoindentation process of polycrystalline copper, it is suggested to machine the microstructural components like grain cells of the polycrystalline material and to avoid the microstructural components like vertex points and triple junctions to reduce the number and energy accumulation of dislocations and the residual stress in the workpiece.
Key words:  micro/nano-machining  polycrystalline copper  microstructural component  nanoindentation  nanoindentation position  deformation mechanism  molecular dynamics

友情链接LINKS