期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:张抒扬,董鹏,敬忠良.变分贝叶斯自适应容积卡尔曼的SLAM算法[J].哈尔滨工业大学学报,2019,51(4):12.DOI:10.11918/j.issn.0367-6234.201801013
ZHANG Shuyang,DONG Peng,JING Zhongliang.Adaptive cubature Kalman filtering SLAM algorithm based on variational Bayes[J].Journal of Harbin Institute of Technology,2019,51(4):12.DOI:10.11918/j.issn.0367-6234.201801013
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1396次   下载 820 本文二维码信息
码上扫一扫!
分享到: 微信 更多
变分贝叶斯自适应容积卡尔曼的SLAM算法
张抒扬,董鹏,敬忠良
(上海交通大学 航空航天学院,上海 200240)
摘要:
在观测噪声参数未知或变化时,传统的同步定位与建图(SLAM)算法性能会下降,为了让SLAM算法性能在上述条件下不受影响同时具有较高的精度,基于此提出了一种基于变分贝叶斯噪声自适应容积卡尔曼滤波的SLAM算法(VB-ACKF-SLAM).该算法采用逆Wishart分布对未知观测噪声参数建模,采用容积积分方法近似非线性变换的均值和方差,并利用变分贝叶斯滤波实现对移动机器人状态和未知观测噪声参数的联合后验概率的估计.该算法有效地解决了在观测噪声参数未知或变化时,传统滤波算法出现的滤波发散问题.仿真实验结果表明,在观测噪声参数未知或变化时,与基于容积卡尔曼滤波的SLAM算法(CFK-SLAM)、无迹卡尔曼滤波的SLAM算法(UKF-SLAM)、扩展卡尔曼滤波的SLAM算法(EKF-SLAM)相比,VB-ACKF-SLAM算法的定位准确率得到了较大的提高,证明了该算法的有效性.
关键词:  SLAM  容积卡尔曼滤波  移动机器人  噪声自适应  变分贝叶斯
DOI:10.11918/j.issn.0367-6234.201801013
分类号:TP242
文献标识码:A
基金项目:国家自然科学基金(61673262); 上海市科委基础研究项目(16JC1401100)
Adaptive cubature Kalman filtering SLAM algorithm based on variational Bayes
ZHANG Shuyang,DONG Peng,JING Zhongliang
(School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China)
Abstract:
When the observed noise parameters are unknown or change with time, the performance of the traditional SLAM algorithm will decline. In this paper, an SLAM algorithm is presented based on variational Bayes noise adaptive cubature Kalman filter (VB-ACKF). The inverse Wishart distribution was used to model the observed noise parameters, and the nonlinear variational Bayes filter was utilized to estimate the joint posteriori probability of the mobile robot state and the unknown observation noise parameter. The proposed algorithm effectively solved the problem of filtering divergence of traditional filtering algorithms when the observed noise parameter was unknown or changing. Simulation results show that the positioning accuracy of VB-ACKF-SLAM algorithm was greatly improved compared with the SLAM method based on the cubature Kalman filter (CKF-SLAM), the unscented Kalman filter SLAM algorithm (UKF-SLAM), and the extended Kalman filter SLAM algorithm (EKF-SLAM) when the observed noise parameters are unknown or changing. The effectiveness of the algorithm is proved.
Key words:  SLAM  cubature Kalman filtering  mobile robot  noise adaptive  variational Baye

友情链接LINKS