期刊检索

  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 冷劲松 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:谢飞,王玲,谭峰,殷国富.基于新陈代谢原理的机床热误差伪滞后建模[J].哈尔滨工业大学学报,2019,51(7):154-159.DOI:10.11918/j.issn.0367-6234.201807117
XIE Fei,WANG Ling,TAN Feng,YIN Guofu.Pseudo-hysteresis modeling for machine tool thermal error based on metabolic theory[J].Journal of Harbin Institute of Technology,2019,51(7):154-159.DOI:10.11918/j.issn.0367-6234.201807117
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 103次   下载 113 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于新陈代谢原理的机床热误差伪滞后建模
谢飞1,王玲1,谭峰2,殷国富1
(1.四川大学 制造科学与工程学院,成都 610065;2.重庆邮电大学 先进制造工程学院,重庆 400065)
摘要:
为了建立预测精度高、泛化性能强的热误差预测模型,提出了一种基于新陈代谢原理的热误差伪滞后预测模型. 通过实验研究发现了机床的伪滞后现象,并假设热误差是前一时刻关键点的温升及热误差共同作用的结果,求解出了机床的热关键点及典型工况下的热误差平均滞后时间. 并利用遗传算法优化了最小二乘支持向量机的结构参数,基于新陈代谢原理对热误差进行迭代求解,从而建立了机床的热误差伪滞后预测模型. 通过对比不同预测模型的预测结果,证明了假设的正确性,并且考虑伪滞后效应的预测模型的预测精度更高、泛化性能更好,能将不同转速的热误差降低90%以上.
关键词:  热误差  伪滞后效应  遗传算法  最小二乘支持向量机  新陈代谢原理
DOI:10.11918/j.issn.0367-6234.201807117
分类号:TG502.15
文献标识码:A
基金项目:国家科技重大专项项目(2017ZX04020001-005)
Pseudo-hysteresis modeling for machine tool thermal error based on metabolic theory
XIE Fei1,WANG Ling1,TAN Feng2,YIN Guofu1
(1.School of Manufacture Science and Engineering, Sichuan University, Chengdu, 610065, China; 2.School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China)
Abstract:
In order to establish a thermal error prediction model with high prediction accuracy and generalization performance, a thermal error pseudo-hysteresis prediction model based on metabolic theory is proposed in this paper. The pseudo-hysteresis effect of machine tool is found by experimental research, and it is assumed that the thermal error is the result of the coupled action of the temperature rise at key points and the thermal error of the previous moment, and the thermal key points of the machine tool and the average lag time in the typical working conditions are solved. The genetic algorithm is used to optimize the structural parameters of the least squares support vector machine (LS-SVM). Based on the principle of metabolism, the thermal error is iteratively solved and the thermal error pseudo-hysteresis prediction model of the machine tool is established. The results of different prediction models show that the correctness of the hypothesis and the prediction accuracy of the pseudo-hysteresis prediction model is higher, the generalization performance is better, and the thermal error of different rotational speeds can be reduced by more than 90%.
Key words:  thermal error  thermal pseudo-hysteresis effect  genetic algorithm  least squares support vector machine  metabolic theory

友情链接LINKS