期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:宿爱静,杨文东,张冲,孔明星.航班运行系统仿真建模分析[J].哈尔滨工业大学学报,2019,51(9):49.DOI:10.11918/j.issn.0367-6234.201803050
SU Aijing,YANG Wendong,ZHANG Chong,KONG Mingxing.Analysis on simulation and modeling of flight operation system[J].Journal of Harbin Institute of Technology,2019,51(9):49.DOI:10.11918/j.issn.0367-6234.201803050
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1627次   下载 655 本文二维码信息
码上扫一扫!
分享到: 微信 更多
航班运行系统仿真建模分析
宿爱静,杨文东,张冲,孔明星
(南京航空航天大学 民航学院,南京 210016)
摘要:
为研究航班计划的运行效率及其在突发扰动下的鲁棒性,将计算机仿真技术应用于航空运输系统,结合分类与航班过站时间的Logistic分布拟合等,通过模拟飞机起飞/降落、滑入/滑出、过站保障和航段飞行等运行过程,建立了含有118个国内主要机场的航班运行仿真模型,在Flexsim平台上实现了大型航空公司航班计划运行仿真. 此模型可以模拟正常和流控等不正常情况下的航班运行,并输出延误时间、正常率、飞机利用率、缓冲时隙等评估指标. 案例分析结果表明:模型较准确地模拟了航空公司航班的实际运行情况. 在正常情况下,对输出指标分析可以确定航班计划中导致延误的重点环节;在流控情况下,可以发现航班延误的范围呈扩散趋势,传播方向沿航班串向下,且延误时间逐渐减少,受直接影响航班过站时间大幅增加,受牵连影响航班过站时间减少.
关键词:  航空运输  航班运行系统  仿真  航班计划  Flexsim  流控
DOI:10.11918/j.issn.0367-6234.201803050
分类号:U8
文献标识码:A
基金项目:青年科技创新基金(NS2016063);南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20170714,kfjj20170702)
Analysis on simulation and modeling of flight operation system
SU Aijing,YANG Wendong,ZHANG Chong,KONG Mingxing
(College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
Abstract:
In order to analyze the operational efficiency and the robustness of flight scheduling, computer simulation technology was applied to air transport system in this paper, and a flight operation system model which contains 118 major domestic airports was constructed based on Flexsim simulation software. The model implemented the flight scheduling operation of a large-scale airline by simulating the aircraft operation processes of take-off/landing, taxiing in/out, flight turnaround ground service, and segment flying. Parameters of several aircraft operation time were set by combining the classification method and different fitting distributions, such as fitting flight turnaround time with Logistic distribution. This system model could simulate flight operation under normal condition and abnormal condition (e.g., flow control), as well as export evaluation indexes, such as delay time, punctuality rate, aircraft utilization rate, and buffer time gap. Case analysis was validated to demonstrate the performance of the model and it showed that the model could accurately simulate the actual operation of airlines’ flight. Under normal condition, the key points of flight delays could be determined with the analysis of output indexes, whereas under flow control the transmission mode of delays were found to be passing down along the flight string as the delay time reduced gradually, and the turnaround time of directly affected flights was increased, while that of indirectly affected flights was reduced at the same time.
Key words:  air transport  flight operation system  simulation  flight scheduling  Flexsim  flow control

友情链接LINKS