期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:宁丽巧,赵鹏,谢秉磊,徐文恺.柔性间隔发车下城轨网络换乘协同优化[J].哈尔滨工业大学学报,2019,51(9):68.DOI:10.11918/j.issn.0367-6234.201804099
NING Liqiao,ZHAO Peng,XIE Binglei,XU Wenkai.Transfer synchronization of urban rail transit network with flexible departure headways[J].Journal of Harbin Institute of Technology,2019,51(9):68.DOI:10.11918/j.issn.0367-6234.201804099
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1146次   下载 761 本文二维码信息
码上扫一扫!
分享到: 微信 更多
柔性间隔发车下城轨网络换乘协同优化
宁丽巧1,2,赵鹏2,谢秉磊1,徐文恺1
(1.哈尔滨工业大学(深圳) 建筑学院, 广东 深圳 518055;2.北京交通大学 交通运输学院, 北京 100044)
摘要:
为提高城市轨道交通网络时刻表和客流需求的匹配性,采用柔性间隔发车策略以提高协同性能. 以等间隔发车模式下列车发车相位确定发车基准点,并容许列车发车时刻在基准点附近可柔性调整一定范围,以最大化网络总换乘协同乘客数为目标构建了基于柔性发车间隔的时刻表协同优化模型;考虑优化模型中存在大量0、1变量,模型求解困难,以各线路的列车发车相位以及各列车发车时刻的柔性偏移量为染色体设计了遗传算法来生成优化解. 案例研究结果表明:遗传算法求解性能好,在等间隔发车时引入10%柔性,实现换乘协同乘客数提高11.85%. 该方法可快速生成网络换乘协同时刻表方案,提高换乘节点效率,能满足大规模网络的求解需求.
关键词:  城市轨道交通  柔性发车间隔  网络换乘协同  混合整数线性规划  遗传算法
DOI:10.11918/j.issn.0367-6234.201804099
分类号:U239.5
文献标识码:A
基金项目:国家自然科学基金(51478036)
Transfer synchronization of urban rail transit network with flexible departure headways
NING Liqiao1,2,ZHAO Peng2,XIE Binglei1,XU Wenkai1
(1. School of Architecture, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China;2. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)
Abstract:
To ensure that the urban rail transit network timetables serve the passenger demand better, a flexible departing scheme was developed to improve the synchronization performance. Departure times with even headways were taken as the benchmark points, and the actual departure times were allowed to vary around the benchmark points within a certain range. Then, a synchronization optimization model with flexible departure headways was proposed to maximize the number of transfer-synchronized passengers in a network. Considering that the model includes an enormous amount of binary variables, an efficient genetic algorithm was designed to solve the model within limited time. The departure phase of each line with even headways and the flexibility of the departure time of each train were chosen as genes to form the chromosome. Finally, experiments were carried out and results showed that the genetic algorithm performed well and the method could improve the number of synchronized passengers significantly compared with the even-headway timetable that a flexibility of 10% in the even headway corresponded to an 11.85% increment in the number of synchronized passengers. The synchronized timetable with high transfer efficiency of a large-scale network could be quickly by the proposed method.
Key words:  urban rail transit  flexible departure headway  transfer synchronization  mixed integer linear programing  genetic algorithm

友情链接LINKS