期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:宗群,李智禹,叶林奇,田栢苓.变信赖域序列凸规划RLV再入轨迹在线重构[J].哈尔滨工业大学学报,2020,52(3):147.DOI:10.11918/201904253
ZONG Qun,LI Zhiyu,YE Linqi,TIAN Bailing.Variable trust region sequential convex programming for RLV online reentry trajectory reconstruction[J].Journal of Harbin Institute of Technology,2020,52(3):147.DOI:10.11918/201904253
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1298次   下载 972 本文二维码信息
码上扫一扫!
分享到: 微信 更多
变信赖域序列凸规划RLV再入轨迹在线重构
宗群,李智禹,叶林奇,田栢苓
(天津大学 电气自动化与信息工程学院, 天津 300072)
摘要:
针对可重复使用运载器(RLV)的再入轨迹重构问题,提出一种基于变信赖域序列凸规划的RLV再入轨迹快速求解方法. 首先,通过离散化及对非凸约束的线性化处理,将RLV的非凸轨迹优化问题转换为凸优化问题,然后通过序列凸规划方法对凸优化问题进行求解. 在序列凸规划求解过程的初始迭代中,采用预测校正算法对初值猜测轨迹进行设计,确定轨迹求解的终端时间;在后续迭代过程中,设计基于优化性能指标的信赖域更新策略,提升算法的收敛性能. 在轨迹快速求解方法的基础上,考虑RLV再入过程中可能发生的突发事件,如实际轨迹大幅度偏离参考轨迹或目标点变更,基于变化的初值约束及终端约束在线重构轨迹,并结合重构轨迹和LQR(Linear quadratic regulator)方法设计再入制导律实现对重构轨迹的有效跟踪. 最后,将此设计方法与Gauss伪谱法及传统序列凸规划算法进行仿真对比验证. 仿真结果表明:变信赖域序列凸规划方法相较于伪谱法和传统的序列凸规划方法在轨迹求解实时性及收敛性方面有较大的提升,具备应用于轨迹在线重构的能力,此外,所提出的轨迹在线重构方法具备良好的鲁棒性以及抗扰性.
关键词:  可重复使用运载器  再入轨迹优化  凸优化  序列凸规划  轨迹重构  信赖域
DOI:10.11918/201904253
分类号:TP273
文献标识码:A
基金项目:国家自然科学基金(4,0,61873340); 装备预研教育部联合基金(6141A02022328)
Variable trust region sequential convex programming for RLV online reentry trajectory reconstruction
ZONG Qun,LI Zhiyu,YE Linqi,TIAN Bailing
(School of Electrical Automation and Information Engineering, Tianjin University, Tianjin 300072, China)
Abstract:
Aiming at the reentry trajectory reconstruction problem of reusable launch vehicle (RLV), a fast solving method based on variable trust region sequential convex programming (SCP) was proposed. First, the non-convex trajectory optimization problem was convexified by discretization and linearizing the non-convex constraints. Then the convex optimization problem was solved using the SCP method. In the initial iteration of SCP, a predictor corrector algorithm was applied to design the initial guessing trajectory and determine the terminal time. In the subsequent iteration, a variable trust region strategy was proposed based on optimization performance indexes, which improved the convergence performance of the algorithm. On the basis of the fast solving method, considering the unexpected events that may occur during the RLV reentry process, such as large deviation and target point changing, the trajectory was reconstructed online taking the changed initial and terminal conditions into account and was tracked effectively using LQR (Linear quadratic regulator) method. Finally, the designed method was compared with the Gauss pseudospectral method and traditional SCP algorithm. Simulation results show that compared with the pseudo-spectrum method and the traditional SCP method, the variable trust region SCP method greatly improved the real-time and convergence of the trajectory solution, and has the ability to be applied to online trajectory reconstruction. Besides, the proposed online trajectory reconstruction method has good robustness and immunity.
Key words:  reusable launch vehicle  reentry trajectory optimization  convex optimization  sequential convex programming  trajectory reconstruction  trust region

友情链接LINKS