摘要: |
直接预测速度控制是实现永磁电机高性能无级联速度控制结构的理想方案,为解决其存在的在线计算负担重、控制自由度受限问题,基于此针对两电平电压型逆变器驱动的永磁电机系统,提出一种增量式直接预测速度控制策略,以期提升电机系统的转速动态控制性能.在所提出策略中,首先,为降低算法在线计算量,根据增量式预测模型建模理论,构建出低复杂度增量式速度预测模型,可在线实现宽时域内的多步速度预测,以增强算法稳定性. 其次,为增加算法控制自由度,扩充虚拟电压矢量至算法控制集,并设计出与之配合的边界矢量合成方法和两阶段穷举寻优方法,以尽可能的降低穷举次数,可以较低的计算量筛选出最优输出电压矢量. 在增量式速度预测模型和扩张控制集的辅助下,所提出策略可在不显著增加在线计算量的基础上,保证算法具备较为优良的转速动、静态性能. 实验结果表明,相比于传统策略,所提出控制策略不仅能够实现对参考转速的无静差平稳跟踪,且转速动态调控能力更优,并具备一定的参数鲁棒性. |
关键词: 永磁电机 有限集模型预测控制 无级联控制结构 宽时域速度控制 参数鲁棒性 |
DOI:10.11918/202003053 |
分类号:TM351 |
文献标识码:A |
基金项目:国家自然科学基金重大项目(51690183); 国家自然科学基金(51907142) |
|
Direct predictive speed control with incremental model for PMSM drive system |
ZHOU Zhanqing1,XIA Changliang1,2
|
(1.National Joint Local Engineering Research Center of Electrical Machine System Intelligent Design and Manufacturing, Tiangong University, Tianjin 300387, China; 2.College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)
|
Abstract: |
Direct predictive speed control (DPSC) is an appropriate solution to achieve high-performance cascade-free control structure of permanent magnet motors, which has the technical limitations of large amount of online calculation and limited control degree of freedom. Based on the two-level inverter-fed permanent magnet synchronous motors (PMSMs) drive system, this paper proposes an improved DPSC strategy with incremental predictive model for improving the speed dynamic control performance of the system. First, in order to reduce the amount of online calculation of the algorithm, a low-complexity incremental speed prediction model was constructed, which can realize long-horizon multi-step speed prediction and ensure the stability of the algorithm. Then, the control-set was expanded with virtual vectors to increase the control degree of freedom, and its corresponding vector synthesis method and two-stage exhaustive optimization were designed to screen the optimal output vector efficiently. Combined with the established speed prediction model and control-set, the stable speed control performance could be obtained with relatively low computational burden. Experimental results show that compared with classical speed control strategies, the proposed strategy had better speed dynamic regulation ability, and the speed reached its reference value rapidly and directly without shooting. Besides, the proposed strategy could operate normally under the condition of parameter mismatch. |
Key words: permanent magnet motors finite-control-set predictive control cascade-free control structure long-horizon speed control parameter robustness |