引用本文: | 王帅,王会宁,唐宇翔,杨学松.流化床膜反应器甘油强化重整的数值模拟[J].哈尔滨工业大学学报,2020,52(7):89.DOI:10.11918/201910087 |
| WANG Shuai,WANG Huining,TANG Yuxiang,YANG Xuesong.Numerical simulation of enhanced reforming of glycerol in a membrane-assisted fluidized bed[J].Journal of Harbin Institute of Technology,2020,52(7):89.DOI:10.11918/201910087 |
|
摘要: |
为实现生物柴油副产物甘油在制氢行业的发展,以流化床甘油重整制氢为研究对象,基于双流体模型和颗粒动力学理论,结合甘油重整反应动力学模型,并嵌入二氧化碳吸附动力学模型和氢气膜分离模型来描述两种强化重整方法的作用. 对流化床反应器生物甘油强化重整制氢过程开展了数值模拟,对反应器内颗粒浓度、组分浓度、温度进行预测,探究重整过程中气固两相流动与反应特性,分析氢气膜分离和二氧化碳吸附两种强化重整方法的相互作用规律,评价操作参数对重整性能的影响. 结果表明:二氧化碳吸附可以抑制浓度极化阻力,提高氢气渗透速率;吸附剂与催化剂比例为1∶1时,与没有吸附剂相比,氢气相对产量提高了5%;氢气分离膜厚的减少会进一步提高二氧化碳吸附速率,当膜厚从300 μm减少到30 μm时,吸附速率提高1.4%;催化-吸附双功能颗粒的使用可以加强二氧化碳的吸附水平,同时促进氢气分离过程,相较于无吸附强化,氢气渗透量提高了近20%. |
关键词: 甘油重整 氢气分离 二氧化碳吸附 流化床 膜分离 |
DOI:10.11918/201910087 |
分类号:TK91 |
文献标识码:A |
基金项目:广东省新能源和可再生能源研究开发与应用重点实验室资助(Y909kq1001) |
|
Numerical simulation of enhanced reforming of glycerol in a membrane-assisted fluidized bed |
WANG Shuai1,2,WANG Huining3,TANG Yuxiang2,YANG Xuesong2
|
(1.Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; 2. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001,China; 3. Beijing Aerospace Propulsion Institute, Beijing 100076, China)
|
Abstract: |
To achieve the development of glycerol as biodiesel byproduct in the industry of hydrogen production, the glycerol reforming process for hydrogen production in a membrane-assisted fluidized bed reactor is numerically simulated on the basis of the two-fluid model and the kinetic theory of granular flow coupled with the glycerol reforming kinetic model, where the CO2 sorption kinetic model and hydrogen separation model are implemented. The gas component and particle concentrations as well as temperature are predicted, and the multiphase flow behaviors and reaction characteristics during the reforming process are evaluated. The mutual interaction mechanism of the two enhancing methods including membrane hydrogen separation and carbon dioxide sorption is discussed, and the impact of operating parameters on reforming performance is examined. The result reveals that the concentration polarization resistance will be restricted with the rising hydrogen permeation. At the sorbent to catalyst ratio of 1∶1, the relative hydrogen yield is improved by 5% compared to the reforming process without sorbents. When the membrane thickness is reduced from 300 μm to 30 μm, the CO2 sorption rate can be increased by 1.4%. The utilization of catalyst-sorbent bi-functional particles can enhance CO2 sorption and hydrogen separation. The hydrogen permeation is improved by almost 20%. |
Key words: glycerol reforming hydrogen separation carbon dioxide sorption fluidized bed membrane separation |