期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:谷新平,韩云鹏,于俊甫.基于决策机理与支持向量机的车辆换道决策模型[J].哈尔滨工业大学学报,2020,52(7):111.DOI:10.11918/201905142
GU Xinping,HAN Yunpeng,YU Junfu.Vehicle lane-changing decision model based on decision mechanism and support vector machine[J].Journal of Harbin Institute of Technology,2020,52(7):111.DOI:10.11918/201905142
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1311次   下载 1158 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于决策机理与支持向量机的车辆换道决策模型
谷新平1,2,韩云鹏1,2,于俊甫1,2
(1.高效洁净机械制造教育部重点实验室(山东大学),济南 250061; 2.山东大学 机械工程学院,济南 250061)
摘要:
驾驶决策机制是保障自动驾驶车辆驾驶安全的关键技术,而换道研究是其重要课题. 然而,在复杂的动态环境下行驶时,使智能车辆做出安全、符合要求的换道决策仍然是一个难点. 为此,首先分析了车辆自由换道的影响因素,采用传统的数理模型建立了基于换道收益、安全和必要性的车辆换道规则模型. 其次,针对在不同的驾驶工况换道决策考虑的因素不同,提出从基于物理状态的特征、基于交互感知的特征以及基于道路结构的特征三个方面提取决策变量,使换道模型决策时考虑的因素更加全面. 然后,针对自由换道决策过程中存在的多参数和非线性问题,提出了基于贝叶斯优化算法(BOA)的支持向量机(SVM)决策模型. 最后,所提出的模型在NGSIM数据集上进行验证,对比试验表明:建立的BOA Gaussian-SVM模型具有较高的综合预测性能,对换道行为的识别准确率可达到92.97%,超越了其他模型并远高于规则模型. 同时在Airsim平台上进行了仿真实验,实验结果进一步证明了BOA Gaussian-SVM决策模型的有效性,说明此模型可进一步应用到自动驾驶和辅助驾驶系统开发中.
关键词:  自动驾驶  自由换道决策  换道决策机理  支持向量机(SVM)  贝叶斯优化算法(BOA)  特征提取
DOI:10.11918/201905142
分类号:U491.2
文献标识码:A
基金项目:山东省重点研发项目(2016ZDJS02A04)
Vehicle lane-changing decision model based on decision mechanism and support vector machine
GU Xinping1,2,HAN Yunpeng1,2,YU Junfu1,2
(1.Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Shandong University), Ministry of Education, Jinan 250061, China; 2. School of Mechanical Engineering, Shandong University, Jinan 250061, China)
Abstract:
This paper first analyzes the influencing factors of free lane change of autonomous driving vehicle, and uses the traditional mathematical model to establish a vehicle lane change rule model based on the benefits, safety and necessity of lane change. Second, in view of the different factors considered in lane changing decision-making under different driving conditions, this paper proposes to extract decision variables from three aspects: physics-based features, interaction-aware features and road-structure-based features, and designs a feature extraction algorithm to make the factors considered in lane changing model decision-making more comprehensive. Then, for the multi-parameter and non-linearity problems existing in the decision-making process of autonomous lane change, a support vector machine (SVM) decision-making model based on Bayesian optimization algorithm (BOA) is proposed. Finally, the proposed model is verified on the NGSIM data set. The comparison test shows that the established BOA Gaussian-SVM model has a high comprehensive prediction performance, and the recognition rate of channel change behavior can reach 92.97%, which is better than other models and much higher than rule-based model. At the same time, simulation experiments are carried out on Airsim platform, and the results prove the effectiveness of BOA Gaussian-SVM decision model.
Key words:  autonomous vehicle  free lane change decision  lane-changing decision mechanism  support vector machine (SVM)  Bayesian optimization algorithm (BOA)  feature extraction

友情链接LINKS