期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:高庆飞,洪能达,郭斌强,刘洋,马其鲁.大跨径悬索桥索鞍处主缆长度计算方法[J].哈尔滨工业大学学报,2020,52(9):57.DOI:10.11918/201909213
GAO Qingfei,HONG Nengda,GUO Binqiang,LIU Yang,MA Qilu.Calculation method for length of main cable at saddle in long-span suspension bridge[J].Journal of Harbin Institute of Technology,2020,52(9):57.DOI:10.11918/201909213
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1272次   下载 1538 本文二维码信息
码上扫一扫!
分享到: 微信 更多
大跨径悬索桥索鞍处主缆长度计算方法
高庆飞1,洪能达2,郭斌强3,刘洋1,马其鲁1
(1.哈尔滨工业大学 交通科学与工程学院,哈尔滨 150090;2. 浙江无限元组合结构桥梁设计有限公司,杭州 310000; 3.浙江省交通规划设计研究院,杭州 310000)
摘要:
为了充分考虑索鞍对主缆长度的影响,兼顾操作便捷性与计算准确性,提出大跨径悬索桥索鞍处主缆长度解析计算方法. 首先,根据主缆与索鞍的几何关系,推导了索鞍处主缆曲线修正算法;然后,利用牛顿-拉菲森迭代法,对所得二元非线性方程组进行求解;最后,选取常见的主索鞍与散索鞍两组算例,验证该方法的可靠性. 结果表明:相比于传统算法,减少了6个方程与6个初始输入参数,表达形式更加明确;仅需输入两个参数,且对参数初始值设置没有严格要求,均可达到快速收敛的效果,增强了其可操作性;迭代次数减少50%,计算时间不足传统算法的10%,大大提高了计算效率,且计算精度可满足工程要求. 所提出的算法可方便地应用于建设期间主缆曲线长度以及索鞍位置的确定,使大跨径悬索桥的施工控制更为精准,进而确保其成桥状态满足设计要求.
关键词:  桥梁工程  主缆长度  牛顿-拉斐森算法  解析算法  悬索桥  索鞍
DOI:10.11918/201909213
分类号:U442.5
文献标识码:A
基金项目:国家自然科学基金(51778194); 中国博士后基金(2017M621282); 哈尔滨工业大学科研创新基金(2019056)
Calculation method for length of main cable at saddle in long-span suspension bridge
GAO Qingfei1,HONG Nengda2,GUO Binqiang3,LIU Yang1,MA Qilu1
(1. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China; 2. Zhejiang Infinite Element Composite Bridge Design Co., Ltd., Hangzhou 310000, China; 3. Zhejiang Provincial Institute of Communications Planning, Design & Research, Hangzhou 310000, China)
Abstract:
Taking into account the influence of saddle on the length of main cable and considering the convenience of operation as well as the calculation accuracy, an analytical calculation method for the length of main cable at the saddle of long-span suspension bridge was proposed. First, according to the geometric relationship between the main cable and the saddle, the main cable curve correction algorithm was derived. Then, the Newton-Raphson iterative method was used to solve the obtained binary nonlinear equations. Finally, the reliability of the method was verified using main cable saddle and loose cable saddle as examples. Results show that compared with traditional algorithm, six equations and six initial input parameters were reduced, which made the expression form clearer. Only two parameters were needed to be input and there was no strict requirement for the setting of the initial values of the parameters, which led to fast convergence and thus enhanced the operability. The number of iterations was reduced by 50%, and the calculation time was less than 10% of the traditional algorithm, which greatly improved the calculation efficiency and met the engineering requirements. The algorithm proposed in this paper can be easily applied to the determination of the length of main cable curve and the position of cable saddle during construction, which can make the construction control of the long-span suspension bridge more accurate so as to ensure that the state of the accomplished bridge meets the design requirements.
Key words:  bridge engineering  length of main cable  Newton-Raphson algorithm  analytical method  suspension bridge  cable saddle

友情链接LINKS