期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:沈强儒,杨少伟,曹慧,顾镇媛,葛婷.立交区域交叉口交通信息识别概率预测[J].哈尔滨工业大学学报,2020,52(9):152.DOI:10.11918/201908085
SHEN Qiangru,YANG Shaowei,CAO Hui,GU Zhenyuan,GE Ting.Prediction for recognition probability of traffic information at intersection of interchanges[J].Journal of Harbin Institute of Technology,2020,52(9):152.DOI:10.11918/201908085
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 1061次   下载 1149 本文二维码信息
码上扫一扫!
分享到: 微信 更多
立交区域交叉口交通信息识别概率预测
沈强儒1,杨少伟2,曹慧1,顾镇媛1,葛婷3
(1.南通大学 交通与土木工程学院,江苏 南通,226019;2.长安大学 公路学院,西安 710064; 3.苏州科技大学 土木工程学院,江苏 苏州215011 )
摘要:
为预测立交区域交叉口交通信息识别概率,运用汽车动力学理论、驾驶员特性原理及动态交通特性获取动态识别视距值,在此基础上采用几何学及概率统计学原理建立典型车型在识别视距范围内交通信息识别框架,运用长期和短期时间序列对立交区域交叉口的交通量进行预测,形成其长期和短期时间序列的交通信息识别概率预测模型,运用实测值对识别概率预测模型仿真标定并检验其可靠性. 结果表明:长期时间序列预测下,交通量大小与交通信息识别概率具有明显的相关性,相关系数达0.849;一周时间的短期时间序列预测交通信息识别概率,其95%的置信区间的实测值与预测值相似度达87.65%,预测模型具有较好的可靠性. 预测交通信息识别概率较大的立交区域交叉口,应考虑加强交通信息灵活性设置并加强交通管控措施.
关键词:  立交区域  交叉口  交通信息  识别视距  概率预测
DOI:10.11918/201908085
分类号:U491
文献标识码:A
基金项目:国家自然科学基金(51808370); 南通市市级基础科学研究项目(JC2018096); 江苏省高等学校自然科学研究面上项目(17KJB580009)
Prediction for recognition probability of traffic information at intersection of interchanges
SHEN Qiangru1,YANG Shaowei2,CAO Hui1,GU Zhenyuan1,GE Ting3
(1. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, Jiangsu, China; 2. School of Highway, Chang’an University, Xi’an 710064, China; 3. School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, Jiangsu, China)
Abstract:
To predict the recognition probability of traffic information at the intersection of interchanges, an approach using vehicle dynamics theory, driver characteristic principle, and dynamic traffic characteristics was adopted to obtain the recognition distance. On the basis of this approach, geometric and statistical principles were applied to establish a framework of traffic information within the recognition distance of typical automobiles. Furthermore, the traffic volume at the intersection of interchanges was predicted using short-and long-term time series, and the prediction results were subsequently implemented to form a prediction model for the recognition probability of traffic signs, which was validated with actual measurement. Results show that under long-term time series prediction, the traffic volume had a significant correlation with the traffic information recognition probability, and the correlation coefficient was 0.849. As for the short-term time series within a week, the overlapped area of 95% prediction interval band between the predicted value and the measured value reached 87.65%, which signifies a high reliability of the prediction model. Based on the high probability of traffic information recognition problems, for the intersection of interchanges with large traffic volume, consideration should be given to strengthen flexible traffic information settings and traffic control measures.
Key words:  interchanges  intersection  traffic information  recognition distance  probalility prediction

友情链接LINKS